Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS Pathog ; 18(4): e1010465, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482816

RESUMO

Although efficacious vaccines have significantly reduced the morbidity and mortality of COVID-19, there remains an unmet medical need for treatment options, which monoclonal antibodies (mAbs) can potentially fill. This unmet need is exacerbated by the emergence and spread of SARS-CoV-2 variants of concern (VOCs) that have shown some resistance to vaccine responses. Here we report the isolation of five neutralizing mAbs from an Indian convalescent donor, out of which two (THSC20.HVTR04 and THSC20.HVTR26) showed potent neutralization of SARS-CoV-2 VOCs at picomolar concentrations, including the Delta variant (B.1.617.2). One of these (THSC20.HVTR26) also retained activity against the Omicron variant. These two mAbs target non-overlapping epitopes on the receptor-binding domain (RBD) of the spike protein and prevent virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Furthermore, the mAb cocktail demonstrated protection against the Delta variant at low antibody doses when passively administered in the K18 hACE2 transgenic mice model, highlighting their potential as a cocktail for prophylactic and therapeutic applications. Developing the capacity to rapidly discover and develop mAbs effective against highly transmissible pathogens like coronaviruses at a local level, especially in a low- and middle-income country (LMIC) such as India, will enable prompt responses to future pandemics as an important component of global pandemic preparedness.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Camundongos , Glicoproteína da Espícula de Coronavírus
2.
World J Microbiol Biotechnol ; 40(3): 82, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285311

RESUMO

Dunaliella salina is a favourable source of high lipid feedstock for biofuel and medicinal chemicals. Low biomass output from microalgae is a significant barrier to industrial-scale commercialisation. The current study aimed to determine how photosynthetic efficiency, carbon fixation, macromolecular synthesis, accumulation of neutral lipids, and antioxidative defence (ROS scavenging enzyme activities) of D. salina cells were affected by different light intensities (LI) (50, 100, 200, and 400 µmol m-2 s-1). The cells when exposed to strong light (400 µmol m-2 s-1) led to reduction in chlorophyll a but the carotenoid content increased by 19% in comparison to the control (LI 100). The amount of carbohydrate changed significantly under high light and in spite of stress inflicted on the cells by high irradiation, a considerable increase in activity of carbonic anhydrase and fixation rate of CO2 were recorded, thus, preserving the biomass content. The high light exposed biomass when subjected to nitrogen-deficient medium led to increase in lipid content (59.92% of the dry cell weight). However, neutral lipid made up 78.26% of the total lipid while other lipids like phospholipid and glycolipid content decreased, showing that the lipid was redistributed in these cells under nitrogen deprivation, making the organism more appropriate for biodiesel/jet fuel use. Although D. salina cells had a relatively longer generation time (3.5 d) than other microalgal cells, an economic analysis concluded that the amount of carotenoid they produced and the quality of their lipids made them more suited for commercialization.


Assuntos
Biocombustíveis , Microalgas , Clorofila A , Carbono , Carotenoides , Glicolipídeos , Nitrogênio
3.
Indian J Med Res ; 157(6): 509-518, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37322634

RESUMO

Background & objectives: Vaccination and natural infection can both augment the immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but how omicron infection has affected the vaccine-induced and hybrid immunity is not well studied in Indian population. The present study was aimed to assess the durability and change in responses of humoral immunity with age, prior natural infection, vaccine type and duration with a minimum gap of six months post-two doses with either ChAdOx1 nCov-19 or BBV152 prior- and post-emergence of the omicron variant. Methods: A total of 1300 participants were included in this observational study between November 2021 and May 2022. Participants had completed at least six months after vaccination (2 doses) with either ChAdOx1 nCoV-19 or an inactivated whole virus vaccine BBV152. They were grouped according to their age (≤ or ≥60 yr) and prior exposure of SARS-CoV-2 infection. Five hundred and sixteen of these participants were followed up after emergence of the Omicron variant. The main outcome was durability and augmentation of the humoral immune response as determined by anti-receptor-binding domain (RBD) immunoglobulin G (IgG) concentrations, anti-nucleocapsid antibodies and anti-omicron RBD antibodies. Live virus neutralization assay was conducted for neutralizing antibodies against four variants - ancestral, delta and omicron and omicron sublineage BA.5. Results: Before the omicron surge, serum anti-RBD IgG antibodies were detected in 87 per cent participants after a median gap of eight months from the second vaccine dose, with a median titre of 114 [interquartile range (IQR) 32, 302] BAU/ml. The levels increased to 594 (252, 1230) BAU/ml post-omicron surge (P<0.001) with 97 per cent participants having detectable antibodies, although only 40 had symptomatic infection during the omicron surge irrespective of vaccine type and previous history of infection. Those with prior natural infection and vaccination had higher anti-RBD IgG titre at baseline, which increased further [352 (IQR 131, 869) to 816 (IQR 383, 2001) BAU/ml] (P<0.001). The antibody levels remained elevated after a mean time gap of 10 months, although there was a decline of 41 per cent. The geometric mean titre was 452.54, 172.80, 83.1 and 76.99 against the ancestral, delta, omicron and omicron BA.5 variants in the live virus neutralization assay. Interpretation & conclusions: Anti-RBD IgG antibodies were detected in 85 per cent of participants after a median gap of eight months following the second vaccine dose. Omicron infection probably resulted in a substantial proportion of asymptomatic infection in the first four months in our study population and boosted the vaccine-induced humoral immune response, which declined but still remained durable over 10 months.


Assuntos
COVID-19 , Humanos , Lactente , COVID-19/prevenção & controle , Imunidade Humoral , SARS-CoV-2 , ChAdOx1 nCoV-19 , Vacinação , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
4.
Transfusion ; 62(7): 1446-1451, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588309

RESUMO

BACKGROUND: Hyperhemolysis syndrome (HHS) is a severe delayed hemolytic transfusion reaction seen in sickle cell disease (SCD) patients, characterized by destruction of donor and recipient RBCs. It results in a drop in hemoglobin to below pretransfusion levels and frequently reticulocytopenia. CASE REPORT: We report a case of a man in his thirties with SCD with a recent hospitalization 2 weeks prior for COVID-19. His red cell antibody history included anti-Fy(a) and warm autoantibody. At that time, he was given 2 units of RBC and discharged with a hemoglobin of 10.2 g/dl. He returned to the hospital approximately 1.5 weeks later with hemoglobin 6.0 g/dl and symptoms concerning for acute chest syndrome. Pretransfusion testing now showed 4+ pan-agglutinin in both gel-based and tube-based testing. Alloadsorption identified an anti-N and a strong cold agglutinin. Three least incompatible units were transfused to this patient over several days, with evidence of hemolysis. Further reference lab work revealed anti-Fya , anti-Fyb , anti-Lea , anti-Leb , and an anti-KN system antibody. The patient's hemoglobin nadired at 4.4 g/dl. The patient was treated with a single dose of tocilizumab, his hemoglobin stabilized, and he was discharged. DISCUSSION: We present a case of HHS proximate to recent SARS-CoV-2 infection with multiple allo and autoantibodies identified. Information on the relationship between SARS-CoV-2 infection and HHS is limited; however, it is possible that inflammation related to COVID-19 could predispose to HHS. Tocilizumab is an approved treatment for COVID-19. Additionally, tocilizumab appears to be a promising treatment option for patients with HHS.


Assuntos
Anemia Falciforme , Tratamento Farmacológico da COVID-19 , COVID-19 , Anemia Falciforme/complicações , Anemia Falciforme/terapia , Anticorpos Monoclonais Humanizados , COVID-19/complicações , COVID-19/terapia , Transfusão de Eritrócitos/efeitos adversos , Hemoglobinas , Hemólise , Humanos , Isoanticorpos , Masculino , SARS-CoV-2
5.
Blood ; 131(25): 2826-2835, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29592891

RESUMO

The anticoagulant warfarin inhibits the vitamin K oxidoreductase (VKORC1), which generates vitamin K hydroquinone (KH2) required for the carboxylation and consequent activation of vitamin K-dependent (VKD) proteins. VKORC1 produces KH2 in 2 reactions: reduction of vitamin K epoxide (KO) to quinone (K), and then KH2 Our dissection of full reduction vs the individual reactions revealed a surprising mechanism of warfarin inhibition. Warfarin inhibition of KO to K reduction and carboxylation that requires full reduction were compared in wild-type VKORC1 or mutants (Y139H, Y139F) that cause warfarin resistance. Carboxylation was much more strongly inhibited (∼400-fold) than KO reduction (two- to threefold). The K to KH2 reaction was analyzed using low K concentrations that result from inhibition of KO to K. Carboxylation that required only K to KH2 reduction was inhibited much less than observed with the KO substrate that requires full VKORC1 reduction (eg, 2.5-fold vs 70-fold, respectively, in cells expressing wild-type VKORC1 and factor IX). The results indicate that warfarin uncouples the 2 reactions that fully reduce KO. Uncoupling was revealed because a second activity, a warfarin-resistant quinone reductase, was not present. In contrast, 293 cells expressing factor IX and this reductase activity showed much less inhibition of carboxylation. This activity therefore appears to cooperate with VKORC1 to accomplish full KO reduction. Cooperation during warfarin therapy would have significant consequences, as VKD proteins function in numerous physiologies in many tissues, but may be poorly carboxylated and dysfunctional if the second activity is not ubiquitously expressed similar to VKORC1.


Assuntos
Anticoagulantes/metabolismo , Vitamina K Epóxido Redutases/metabolismo , Vitamina K/metabolismo , Varfarina/metabolismo , Animais , Anticoagulantes/farmacologia , Linhagem Celular , Cricetinae , Resistência a Medicamentos , Humanos , Oxirredução/efeitos dos fármacos , Mutação Puntual , Vitamina K 1/análogos & derivados , Vitamina K 1/metabolismo , Vitamina K Epóxido Redutases/antagonistas & inibidores , Vitamina K Epóxido Redutases/genética , Varfarina/farmacologia
6.
J Environ Manage ; 256: 109908, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31822458

RESUMO

Phenolics drive the global economy, but they also pose threats to soil health and plant growth. Enzymes like peroxidase have the potential to remove the phenolic contaminants from the wastewater; however, their role in restoring soil health and improving plant growth has not yet been ascertained. We fractionated efficient peroxidases (MPx) from leaves of an invasive species of Mesquite, Prosopis juliflora, and demonstrated its superiority over horseradish peroxidase (HRP) in remediating phenol, 3-chlorophenol (3-CP), and a mixture of chlorophenols (CP-M), from contaminated soil. MPx removes phenolics over a broader range of pH (2.0-9.0) as compared with HRP (pH: 7.0-8.0). In soil, replacing H2O2 with CaO2 further increases the phenolic removal efficiency of MPx (≥90% of phenol, ≥ 70% of 3-CP, and ≥90% of CP-M). MPx maintains ~4-fold higher phenolic removal efficiency than purified HRP even in soils with extremely high contaminant concentration (2 g phenolics/kg of soil), which is desirable for environmental applications of enzymes for remediation. MPx treatment restores soil biological processes as evident by key enzymes of soil fertility viz. Acid- and alkaline-phosphatases, urease, and soil dehydrogenase, and improves potential biochemical fertility index of soil contaminated with phenolics. MPx treatment also assists the Vigna mungo test plant to overcome toxicant stress and grow healthy in contaminated soils. Optimization of MPx for application in the field environment would help both in the restoration of phenolic-contaminated soils and the management of invasive Mesquite.


Assuntos
Prosopis , Poluentes do Solo , Biodegradação Ambiental , Peróxido de Hidrogênio , Espécies Introduzidas , Peroxidases , Fenóis , Solo
7.
Mol Cell Biochem ; 426(1-2): 87-99, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27868169

RESUMO

Leukemia is among the most aggressive and prevalent human malignant carcinoma. Chemotherapy is the preferred therapeutic strategy; however, recurrence of cancer and non-selective cytotoxicity are the major concerns. Unlike synthetic chemotherapeutic agents, mistletoe ribosome-inactivating protein (RIP) displays anti-tumor function in various types of cancers. However, its effect on leukemia cells is little explored. In this study, we assessed the impact of Viscum articulatum RIP (Articulatin-D) on the survival of acute T-cell leukemia cells and the involved molecular and cellular mechanisms. Cell proliferation assay showed that Articulatin-D suppressed the viability of leukemia cells selectively. We further confirmed that the elevation of mitochondrial membrane potential and exposure of phosphatidylserine are the early events of apoptosis induction in Articulatin-D-treated Jurkat cells. Subsequently, we found that Articulatin-D treatment induces apoptosis in Jurkat cells in a time- and concentration-dependent manner. In conclusion, we provided evidence that Articulatin-D efficiently activates caspase-8 involved in extrinsic pathway of apoptosis induction, which ultimately results in caspase-3-dependent DNA fragmentation of Jurkat cells. Further evaluation of Articulatin-D in cell culture and animal models may provide novel information on selective cytotoxicity to acute T-cell leukemia and its involvement in targeting tumor cell survival pathways.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Proliferação de Células/efeitos dos fármacos , Preparações de Plantas/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Toxinas Biológicas/farmacologia , Viscum/química , Fragmentação do DNA/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Células Jurkat , Preparações de Plantas/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Inativadoras de Ribossomos Tipo 2/química , Toxinas Biológicas/química
8.
Int J Phytoremediation ; 19(10): 884-893, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28318304

RESUMO

A new isolate of genus Scytonema distinct from its closest relative cyanobacterium, Scytonema hofmanni was found efficient in the removal and degradation of organophosphorus (OP) pesticide, methyl parathion (MP). The cyanobacterial isolate was also capable of utilizing the phosphorus present in the MP following its degradation, which was evident from the increase in growth (chlorophyll content), biomass, protein content, and total phosphorus in comparison to cyanobacterium grown in phosphate-deficient cultures. The rapid removal of MP by the cyanobacterium during initial 6 hours of incubation was defined by the pseudo-second-order biosorption kinetics model, which indicated the involvement of chemosorption in initial removal of pesticide. Further, degradation of MP was also confirmed by the appearance of p-nitrophenol in the medium after 24 hours of incubation. Thus, the cyanobacterial isolate of Scytonema sp. BHUS-5 seems to be a potential bioremediation agent for the removal of OP pesticide, MP from the habitat.


Assuntos
Biodegradação Ambiental , Metil Paration , Cianobactérias/fisiologia , Nitrofenóis , Fosfatos
9.
J Basic Microbiol ; 57(2): 171-183, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28165619

RESUMO

Calcium being a signaling molecule and mediator of cell response, we examined the modulation in fatty acid and hydrocarbon profiles of wild type cyanobacterium Anabaena sp. PCC 7120 and its ntcA mutant under the influence of different calcium chloride concentrations (0-10 mM). Dynamic modifications in fatty acid and hydrocarbon profile were evident through GC-FID analysis of extracted lipids. In the wild type, increase in CaCl2 (10 mM) resulted in unsaturation of fatty acids (observed in terms of high MUFA/PUFA ratio) while hydrocarbon production was distinctly high in the mutant strain compared to wild type at all tested concentrations. The synthesis of short chain hydrocarbons (C5-C8) were dominated at inhibitory concentration (10 mM CaCl2) in mutant strain. Results suggest that the increase in MUFA/PUFA ratio at inhibitory concentration in wild type, and higher percentage of hydrocarbons in mutant strain, may be attributed to the survival and acclimation strategies under altered calcium environment. Our results also suggest the involvement of the ntcA gene (master regulator of N2 metabolism) in regulation of carbon metabolism; specifically fatty acid, hydrocarbon, and other metabolic compounds essential for maintenance and sustenance of growth under stress condition. Thus, our study outlines basic acclimation response along with possibilities of production of fatty acid and hydrocarbon derived biofuel and other bioactive compounds in Anabaena sp. PCC 7120 under altered calcium levels which could be of biotechnological interest.


Assuntos
Anabaena/efeitos dos fármacos , Anabaena/metabolismo , Proteínas de Bactérias/genética , Cloreto de Cálcio/metabolismo , Ácidos Graxos/metabolismo , Hidrocarbonetos/metabolismo , Fatores de Transcrição/deficiência , Anabaena/genética , Carbono/metabolismo , Deleção de Genes , Nitrogênio/metabolismo , Fatores de Transcrição/genética
10.
J Basic Microbiol ; 56(7): 762-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26374944

RESUMO

In order to understand a cross talk between Ca(2+) and ROS regulating enzymes and the possible involvement of ntcA gene, Anabaena sp. PCC 7120 and its derivative ntcA mutant grown in varied levels of calcium chloride (0, 1, 10, and 100 mM) have been investigated. Scanning Electron Microscopy showed abnormal structure formation at high calcium concentration (100 mM) both in wild type and mutant. Fv /Fm values suggested that 100 mM calcium concentration was detrimental for photosynthetic apparatus. SOD, catalase, APX, GR, and peroxidase activity were found to be maximum for 100 mM and minimum for 1 mM of exogenously supplied calcium salt. NADPH contents were higher for wild type than mutant. RAPD-PCR and SDS-PAGE analysis revealed a difference in DNA as well as proteome pattern with changes in calcium chloride regime. Prominent bands of approximately 70, 33, 21, and 14 kDa expressed in the wild type served as the marker polypeptide bands under calcium supplementation. Results suggest that higher levels of calcium ion disturb the cellular homeostasis generating ROS, thereby inducing enhanced levels of antioxidative enzymes. Further, data also suggests possible involvement of ntcA gene in cross talk between calcium ion and ROS regulating enzymes.


Assuntos
Anabaena/enzimologia , Cloreto de Cálcio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Anabaena/genética , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Genes Bacterianos/genética , Glutationa Redutase/metabolismo , Peroxidase/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Superóxido Dismutase/metabolismo
11.
J Environ Sci Health B ; 51(11): 781-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27428931

RESUMO

To understand the mechanism underlying organophosphate pesticide toxicity, cyanobacterium Anabaena PCC 7120 was subjected to varied concentrations (0, 5, 10, 20 and 30 mg L(-1)) of profenofos and the effects were investigated in terms of changes in cellular physiology, genomic template stability and protein expression pattern. The supplementation of profenofos reduced the growth, total pigment content and photosynthetic efficiency of the test organism in a dose dependent manner with maximum toxic effect at 30 mg L(-1). The high fluorescence intensity of 2', 7' -dichlorofluorescin diacetate and increased production of malondialdehyde confirmed the prevalence of acute oxidative stress condition inside the cells of the cyanobacterium. Rapid amplified polymorphic DNA (RAPD) fingerprinting and SDS-PAGE analyses showed a significant alteration in the banding patterns of DNA and proteins respectively. A marked increase in superoxide dismutase, catalase, peroxidase activity and a concomitant reduction in glutathione content indicated their possible role in supporting the growth of Anabaena 7120 up to 20 mg L(-1). These findings suggest that the uncontrolled use of profenofos in the agricultural fields may not only lead to the destruction of the cyanobacterial population, but it would also disturb the nutrient dynamics and energy flow.


Assuntos
Anabaena/enzimologia , Catalase/metabolismo , DNA de Algas/efeitos dos fármacos , Inseticidas/toxicidade , Malondialdeído/toxicidade , Organotiofosfatos/toxicidade , Fenômenos Fisiológicos/efeitos dos fármacos , Anabaena/efeitos dos fármacos , Catalase/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Inseticidas/metabolismo , Malondialdeído/metabolismo , Organotiofosfatos/metabolismo , Fotossíntese/efeitos dos fármacos , Técnica de Amplificação ao Acaso de DNA Polimórfico , Superóxido Dismutase/efeitos dos fármacos
12.
Physiol Mol Biol Plants ; 22(4): 557-566, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27924128

RESUMO

Influence of various levels of CaCl2 (0, 1, 10 and 100 mM) on exopolysaccharide production has been investigated in the cyanobacterium Anabaena 7120. At the concentration of 1 mM CaCl2, growth was found to be stimulatory while 100 mM was sub lethal for the cyanobacterial cells. Estimation of EPS content revealed that EPS production depends on the concentration of calcium ions in the immediate environment with maximum being at10 mM CaCl2. A possible involvement of alr2882 gene in the process of EPS production was also revealed through qRT-PCR. Further, FTIR-spectra marked the presence of aliphatic alkyl-group, primary amine-group, and polysaccharides along with shift in major absorption peaks suggesting that calcium levels in the external environment regulate the composition of EPS produced by Anabaena 7120. Thus, both quantity and composition of EPS is affected under different calcium chloride concentrations presenting possibilities of EPS with novel unexplored features that may offer biotechnological applications.

13.
NPJ Vaccines ; 9(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167915

RESUMO

Measuring SARS-CoV-2-specific T cell responses is crucial to understanding an individual's immunity to COVID-19. However, high inter- and intra-assay variability make it difficult to define T cells as a correlate of protection against COVID-19. To address this, we performed systematic review and meta-analysis of 495 datasets from 94 original articles evaluating SARS-CoV-2-specific T cell responses using three assays - Activation Induced Marker (AIM), Intracellular Cytokine Staining (ICS), and Enzyme-Linked Immunospot (ELISPOT), and defined each assay's quantitative range. We validated these ranges using samples from 193 SARS-CoV-2-exposed individuals. Although IFNγ ELISPOT was the preferred assay, our experimental validation suggested that it under-represented the SARS-CoV-2-specific T cell repertoire. Our data indicate that a combination of AIM and ICS or FluoroSpot assay would better represent the frequency, polyfunctionality, and compartmentalization of the antigen-specific T cell responses. Taken together, our results contribute to defining the ranges of antigen-specific T cell assays and propose a choice of assay that can be employed to better understand the cellular immune response against viral diseases.

14.
Microbiol Spectr ; : e0433222, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946746

RESUMO

Understanding the quality of immune repertoire triggered during natural infection can provide vital clues that form the basis for development of a humoral immune response in some individuals capable of broadly neutralizing pan-SARS-CoV-2 variants. In the present study, we report variations in neutralization potential against Omicron variants of two novel neutralizing monoclonal antibodies (MAbs), THSC20.HVTR11 and THSC20.HVTR55, isolated from an unvaccinated convalescent individual that represent distinct B cell lineage origins and epitope specificity compared to five MAbs we previously reported that were isolated from the same individual. In addition, we observed neutralization of Omicron variants by plasma antibodies obtained from this particular individual postvaccination with increased magnitude. Interestingly, this observation was found to be comparable with six additional individuals who initially were also infected with ancestral SARS-CoV-2 and then received vaccines, indicating that hybrid immunity can provide robust humoral immunity likely by antibody affinity maturation. Development of a distinct antigen-specific B cell repertoire capable of producing polyclonal antibodies with distinct affinity and specificities offers the highest probability of protecting against evolving SARS-CoV-2 variants. IMPORTANCE Development of robust neutralizing antibodies in SARS-CoV-2 convalescent individuals is known; however, it varies at the population level. We isolated monoclonal antibodies from an individual infected with ancestral SARS-CoV-2 in early 2020 that not only varied in their B cell lineage origin but also varied in their capability and potency to neutralize all the known variants of concern (VOCs) and currently circulating Omicron variants. This indicated establishment of unique lineages that contributed in forming a B cell repertoire in this particular individual immediately following infection, giving rise to diverse antibody responses that could complement each other in providing a broadly neutralizing polyclonal antibody response. Individuals who were able to produce polyclonal antibody responses with higher magnitude have a higher chance of being protected from evolving SARS-CoV-2 variants.

15.
Indian J Physiol Pharmacol ; 56(1): 63-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029966

RESUMO

Prana is the energy, when the self-energizing force embraces the body with extension and expansion and control, it is pranayama. It may affect the milieu at the bronchioles and the alveoli particularly at the alveolo-capillary membrane to facilitate diffusion and transport of gases. It may also increase oxygenation at tissue level. Aim of our study is to compare pulmonary functions and diffusion capacity in patients of bronchial asthma before and after yogic intervention of 2 months. Sixty stable asthmatic-patients were randomized into two groups i.e group 1 (Yoga training group) and group 2 (control group). Each group included thirty patients. Lung functions were recorded on all patients at baseline, and then after two months. Group 1 subjects showed a statistically significant improvement (P<0.001) in Transfer factor of the lung for carbon monoxide (TLCO), forced vital capacity (FVC), forced expiratory volume in 1st sec (FEV1), peak expiratory flow rate (PEFR), maximum voluntary ventilation (MVV) and slow vital capacity (SVC) after yoga practice. Quality of life also increased significantly. It was concluded that pranayama & yoga breathing and stretching postures are used to increase respiratory stamina, relax the chest muscles, expand the lungs, raise energy levels, and calm the body.


Assuntos
Asma/fisiopatologia , Monóxido de Carbono/metabolismo , Pulmão/fisiopatologia , Yoga , Volume Expiratório Forçado , Humanos , Capacidade de Difusão Pulmonar , Capacidade Vital
16.
EBioMedicine ; 78: 103938, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305396

RESUMO

BACKGROUND: Rapid spread of the omicron SARS-CoV-2 variant despite extensive vaccination suggests immune escape. The neutralising ability of different vaccines alone or with natural SARS-CoV-2 infection against omicron is not well-known. METHODS: In this cross-sectional study, we tested the ability of vaccine and natural infection induced antibodies to neutralise omicron variant in a live virus neutralisation assay in four groups of individuals: (i) ChAdOx1 nCoV-19 vaccination, (ii) ChAdOx1 nCoV-19 vaccination plus prior SARS-CoV-2 infection, (iii) vaccination with inactivated virus vaccine (BBV152), and (iv) BBV152 vaccination plus prior SARS-CoV-2 infection. Primary outcome was fold-change in virus neutralisation titre against omicron compared with ancestral virus. FINDINGS: We included 80 subjects. The geometric mean titre (GMT) of the 50% focus reduction neutralisation test (FRNT50) was 380·4 (95% CI: 221·1, 654·7) against the ancestral virus with BBV152 vaccination and 379·3 (95% CI: 185·6, 775·2) with ChAdOx1 nCov-19 vaccination alone. GMT for vaccination plus infection groups were 806·1 (95% CI: 478·5, 1357·8) and 1526·2 (95% CI: 853·2, 2730·0), respectively. Against omicron variant, only 5 out of 20 in both BBV152 and ChAdOx1 nCoV-19 vaccine only groups, 6 out of 20 in BBV152 plus prior SARS-CoV-2 infection group, and 9 out of 20 in ChAdOx1 nCoV-19 plus prior SARS-CoV-2 infection group exhibited neutralisation titres above the lower limit of quantification (1:20) suggesting better neutralisation with prior infection. A reduction of 26·6 and 25·7 fold in FRNT50 titres against Omicron compared to ancestral SARS-CoV-2 strain was observed for individuals without prior SARS-CoV-2 infection vaccinated with BBV152 and ChAdOx1 nCoV-19, respectively. The corresponding reduction was 57·1 and 58·1 fold, respectively, for vaccinated individuals with prior infection. The 50% neutralisation titre against omicron demonstrated moderate correlation with serum anti-RBD IgG levels [Spearman r: 0·58 (0·41, 0·71)]. INTERPRETATION: Significant reduction in the neutralising ability of both vaccine-induced and vaccine plus infection-induced antibodies was observed for omicron variant which might explain immune escape. FUNDING: Department of Biotechnology, India; Bill & Melinda Gates Foundation, USA.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Estudos Transversais , Humanos , SARS-CoV-2 , Vacinas de Produtos Inativados
17.
Nat Microbiol ; 7(7): 974-985, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35681012

RESUMO

BBV152 is a whole-virion inactivated vaccine based on the Asp614Gly variant. BBV152 is the first alum-imidazoquinolin-adjuvanted vaccine authorized for use in large populations. Here we characterized the magnitude, quality and persistence of cellular and humoral memory responses up to 6 months post vaccination. We report that the magnitude of vaccine-induced spike and nucleoprotein antibodies was comparable with that produced after infection. Receptor binding domain-specific antibodies declined against variants in the order of Alpha (B.1.1.7; 3-fold), Delta (B.1.617.2; 7-fold) and Beta (B.1.351; 10-fold). However, pseudovirus neutralizing antibodies declined up to 2-fold against the Delta followed by the Beta variant (1.7-fold). Vaccine-induced memory B cells were also affected by the Delta and Beta variants. The SARS-CoV-2-specific multicytokine-expressing CD4+ T cells were found in ~85% of vaccinated individuals. Only a ~1.3-fold reduction in efficacy was observed in CD4+ T cells against the Beta variant. We found that antigen-specific CD4+ T cells were present in the central memory compartment and persisted for at least up to 6 months post vaccination. Vaccine-induced CD8+ T cells were detected in ~50% of individuals. Importantly, the vaccine was capable of inducing follicular T helper cells that exhibited B-cell help potential. These findings show that inactivated vaccine BBV152 induces robust immune memory to SARS-CoV-2 and variants of concern that persists for at least 6 months after vaccination.


Assuntos
COVID-19 , Vacinas Virais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Memória Imunológica , SARS-CoV-2 , Vacinas de Produtos Inativados , Vírion
18.
Transfusion ; 51(10): 2142-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21517889

RESUMO

BACKGROUND: Lack of Cc and Ee expression is associated with either hybrid alleles in which regions of RHCE are replaced by RHD or nucleotide deletion(s) in RHCE. The former have been found as D- - phenotypes, and the latter as Rh(null) when accompanied by deletion of RHD. We investigated RH in eight samples, three presenting as D- -, whose c-E- red blood cell (RBC) typing was discordant with the RHCE genotype that predicted c+E+. STUDY DESIGN AND METHODS: Serologic and molecular testing was performed by standard methods. CASES AND RESULTS: RBCs from Patient 1 were D+C-E-c+e+(w) but DNA testing predicted E+. RBCs from Patients 2, 3, and 4 typed as D+C-E-c-e- but DNA testing predicted c+E+. All had alloantibodies strongly reactive with all RBCs tested except D- - and Rh(null). Patient 5 had anti-c and anti-E but DNA testing predicted she was c+E+. RBCs from three donors typed D+C+E-c-e+ with DNA testing predicting c+E+. All had RHCE*cE with deletion of nucleotide 907C in Exon 6 predicted to cause a premature stop codon at Amino Acid 303 (Leu303Stop). HphI polymerase chain reaction-restriction fragment length polymorphism was used to confirm the deletion and to screen 100 Hispanic, 100 Caucasian, and 100 African American donor samples. One additional example was found. CONCLUSIONS: A novel allele, RHCE*cE 907delC (ISBT provisional designation RHCE*03N.02), silences c and E and in the homozygous state resulted in a D- - phenotype and production of anti-Rh17. All eight probands were Hispanic. The allele is associated with discrepant molecular typing, with an approximate frequency of 0.005 in Hispanics.


Assuntos
Hispânico ou Latino/genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Deleção de Sequência , Adulto , Idoso , Sequência de Bases , Tipagem e Reações Cruzadas Sanguíneas , DNA/química , Feminino , Haplótipos , Humanos , Gravidez
19.
Bioorg Med Chem ; 19(1): 197-210, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21172735

RESUMO

In continuing our search of potent antimalarials based on 8-aminoquinoline structural framework, three series of novel bis(8-aminoquinolines) using convenient one to four steps synthetic procedures were synthesized. The bisquinolines were evaluated for in vitro antimalarial (Plasmodiumfalciparum), antileishmanial (Leishmaniadonovani), antimicrobial (a panel of pathogenic bacteria and fungi), cytotoxicity, ß-hematin inhibitory and methemoglobin (MetHb) formation activities. Several compounds exhibited superior antimalarial activities compared to parent drug primaquine. Selected compounds (44, 61 and 79) when tested for in vivo blood-schizontocidal antimalarial activity (Plasmodiumberghei) displayed potent blood-schizontocial activities. The bisquinolines showed negligible MetHb formation (0.2-1.2%) underlining their potential in the treatment of glucose-6-phosphate dehydrogenase deficient patients. The bisquinoline analogues (36, 73 and 79) also exhibited promising in vitro antileishmanial activity, and antimicrobial activities (43, 44 and 76) against a panel of pathogenic bacteria and fungi. The results of this study provide evidence that bis(8-aminoquinolines), like their bis(4-aminoquinolines) and artemisinin dimers counterparts, are a promising class of antimalarial agents.


Assuntos
Aminoquinolinas/farmacologia , Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Hemeproteínas/antagonistas & inibidores , Metemoglobina/biossíntese , Aminoquinolinas/síntese química , Animais , Anti-Infecciosos/química , Antiprotozoários/química , Humanos
20.
Gut Microbes ; 13(1): 1986665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696686

RESUMO

Non-typhoidal Salmonella (NTS) infections result in self limiting gastroenteritis except in rare cases wherein manifestations of chronic infections can occur. Strategies employed by Salmonella to thrive in hostile environments of host during chronic infections are complex and multifaceted. In chronic state, a coordinated action of bacterial effectors allows reprogramming of macrophages to M2 subtype and thereby creating a permissible replicative niche. The mechanistic details of these processes are not fully known. In the current study we identified, histone H3-lysine 27 trimethylation (H3K27me3)-specific demethylase, KDM6B to be upregulated in both cell culture and in murine model of Salmonella infection. KDM6B recruitment upon infection exhibited an associated loss of overall H3K27me3 in host cells and was Salmonella SPI1 effectors coordinated. ChIP-qRT-PCR array analysis revealed several new gene promoter targets of KDM6B demethylase activity including PPARδ, a crucial regulator of fatty acid oxidation pathway and Salmonella-persistent infections. Furthermore, pharmacological inhibition of KDM6B demethylase activity with GSKJ4 in chronic Salmonella infection mice model led to a significant reduction in pathogen load and M2 macrophage polarization in peripheral lymphoid organs. The following work thus reveals Salmonella effector-mediated epigenetic reprogramming of macrophages responsible for its long-term survival and chronic carriage.


Assuntos
Epigênese Genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Infecções por Salmonella/enzimologia , Salmonella typhimurium/fisiologia , Animais , Doença Crônica , Modelos Animais de Doenças , Histonas/genética , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , PPAR delta/genética , PPAR delta/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA