Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mediators Inflamm ; 2020: 7461742, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684836

RESUMO

The immunopathology of chlamydial diseases is exacerbated by a broad-spectrum of inflammatory mediators, which we reported are inhibited by IL-10 in macrophages. However, the chlamydial protein moiety that induces the inflammatory mediators and the mechanisms by which IL-10 inhibits them are unknown. We hypothesized that Chlamydia major outer membrane protein (MOMP) mediates its disease pathogenesis, and the suppressor of cytokine signaling (SOCS)1 and SOCS3 proteins are mediators of the IL-10 inhibitory actions. Our hypothesis was tested by exposing mouse J774 macrophages to chlamydial stimulants (live Chlamydia muridarum and MOMP) with and without IL-10. MOMP significantly induced several inflammatory mediators (IL-6, IL-12p40, CCL5, CXCL10), which were dose-dependently inhibited by IL-10. Chlamydial stimulants induced the mRNA gene transcripts and protein expression of SOCS1 and SOCS3, with more SOCS3 expression. Notably, IL-10 reciprocally regulated their expression by reducing SOCS1 and increasing SOCS3. Specific inhibitions of MAPK pathways revealed that p38, JNK, and MEK1/2 are required for inducing inflammatory mediators as well as SOCS1 and SOCS3. Chlamydial stimulants triggered an M1 pro-inflammatory phenotype evidently by an enhanced nos2 (M1 marker) expression, which was skewed by IL-10 towards a more M2 anti-inflammatory phenotype by the increased expression of mrc1 and arg1 (M2 markers) and the reduced SOCS1/SOCS3 ratios. Neutralization of endogenously produced IL-10 augmented the secretion of inflammatory mediators, reduced SOCS3 expression, and skewed the chlamydial M1 to an M2 phenotype. Inhibition of proteasome degradation increased TNF but decreased IL-10, CCL5, and CXCL10 secretion by suppressing SOCS1 and SOCS3 expressions and dysregulating their STAT1 and STAT3 transcription factors. Our data show that SOCS1 and SOCS3 are regulators of IL-10 inhibitory actions, and underscore SOCS proteins as therapeutic targets for IL-10 control of inflammation for Chlamydia and other bacterial inflammatory diseases.


Assuntos
Proteínas da Membrana Bacteriana Externa/toxicidade , Chlamydia muridarum/patogenicidade , Inflamação/metabolismo , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Linhagem Celular , Citometria de Fluxo , Camundongos , Microscopia de Fluorescência , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética
2.
Nanomedicine ; 29: 102257, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32610072

RESUMO

Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.


Assuntos
Imunidade Adaptativa/genética , Proteínas da Membrana Bacteriana Externa/genética , Nanopartículas/química , Vacinas/imunologia , Imunidade Adaptativa/imunologia , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Antígenos CD4/química , Antígenos CD4/imunologia , Chlamydia/genética , Chlamydia/imunologia , Chlamydia/patogenicidade , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Selectina L/química , Selectina L/imunologia , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Linfócitos T/imunologia , Vacinas/genética
3.
J Nanobiotechnology ; 16(1): 31, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587743

RESUMO

BACKGROUND: Synthesis of silver nano-compounds with enhanced antimicrobial effects is of great interest for the development of new antibacterial agents. Previous studies have reported the antibacterial properties of pegylated silver-coated carbon nanotubes (pSWCNT-Ag) showing less toxicity in human cell lines. However, the mechanism underlining the pSWCNT-Ag as a bactericidal agent remained unfolded. Here we assessed the pSWCNT-Ag effects against foodborne pathogenic bacteria growth and proteome profile changes. RESULTS: Measurements of bioluminescent imaging, optical density, and bacteria colony forming units revealed dose-dependent and stronger bactericidal activity of pSWCNT-Ag than their non-pegylated counterparts (SWCNT-Ag). In ovo administration of pSWCNT-Ag or phosphate-buffered saline resulted in comparable chicken embryo development and growth. The proteomic analysis, using two-dimensional electrophoresis combined with matrix assisted laser desorption/ionization time of flight/time of flight mass spectrometry, was performed on control and surviving Salmonella enterica serovar Typhimurium to pSWCNT-Ag. A total of 15 proteins (ten up-regulated and five down-regulated) differentially expressed proteins were identified. Functional analyses showed significant reduction of proteins associated with biofilm formation, nutrient and energy metabolism, quorum sensing and maintenance of cell structure and cell motility in surviving S. Typhimurium. In contrast, proteins associated with oxygen stress, DNA protection, starvation, membrane rebuilding, and alternative nutrient formation were induced as the compensatory reaction. CONCLUSIONS: This study provides further evidence of the antibacterial effects of pSWCNT-Ag nanocomposites and knowledge of their mechanism of action through various protein changes. The findings may lead to the development of more effective and safe antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nanotubos de Carbono/química , Salmonella typhimurium/efeitos dos fármacos , Prata/farmacologia , Animais , Antibacterianos/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Embrião de Galinha , Composição de Medicamentos , Desenvolvimento Embrionário/efeitos dos fármacos , Microbiologia de Alimentos , Ontologia Genética , Humanos , Medições Luminescentes , Anotação de Sequência Molecular , Nanocompostos/química , Polietilenoglicóis/química , Proteoma/agonistas , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Prata/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Int J Mol Sci ; 18(4)2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387714

RESUMO

Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application.


Assuntos
Fenômenos Fisiológicos da Pele , Engenharia Tecidual/métodos , Cicatrização , Materiais Biocompatíveis , Humanos , Regeneração , Transplante de Pele , Pele Artificial
5.
BMC Microbiol ; 16(1): 192, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549081

RESUMO

BACKGROUND: Antimicrobial peptides (AMPs) are a class of antimicrobial agents with broad-spectrum activities. Several reports indicate that cationic AMPs bind to the negatively charged bacterial membrane causing membrane depolarization and damage. However, membrane depolarization and damage may be insufficient to elicit cell death, thereby suggesting that other mechanism(s) of action could be involved in this phenomenon. In this study, we investigated the antimicrobial activity of a novel antimicrobial peptide, TP359, against two strains of Pseudomonas aeruginosa, as well as its possible mechanisms of action. RESULTS: TP359 proved to be bactericidal against P. aeruginosa as confirmed by the reduced bacteria counts, membrane damage and cytoplasmic membrane depolarization. In addition, it was non-toxic to mouse J774 macrophages and human lung A549 epithelial cells. Electron microscopy analysis showed TP359 bactericidal effects by structural changes of the bacteria from viable rod-shaped cells to those with cell membrane damages, proceeding into the efflux of cytoplasmic contents and emergence of ghost cells. Gene expression analysis on the effects of TP359 on outer membrane biogenesis genes underscored marked down-regulation, particularly of oprF, which encodes a major structural and outer membrane porin (OprF) in both strains studied, indicating that the peptide may cause deregulation of outer membrane genes and reduced structural stability which could lead to cell death. CONCLUSION: Our data shows that TP359 has potent antimicrobial activity against P aeruginosa. The correlation between membrane damage, depolarization and reduced expression of outer membrane biogenesis genes, particularly oprF may suggest the bactericidal mechanism of action of the TP359 peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas da Membrana Bacteriana Externa/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Células A549 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Porinas/efeitos dos fármacos , Porinas/genética , Pseudomonas aeruginosa/metabolismo
6.
J Nanobiotechnology ; 14(1): 58, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27412259

RESUMO

BACKGROUND: Due to increasing antibiotic resistance, the use of silver coated single walled carbon nanotubes (SWCNTs-Ag) and antimicrobial peptides (APs) is becoming popular due to their antimicrobial properties against a wide range of pathogens. However, stability against various conditions and toxicity in human cells are some of the major drawbacks of APs and SWCNTs-Ag, respectively. Therefore, we hypothesized that APs-functionalized SWCNTs-Ag could act synergistically. Various covalent functionalization protocols described previously involve harsh treatment of carbon nanotubes for carboxylation (first step in covalent functionalization) and the non-covalently functionalized SWCNTs are not satisfactory. METHODS: The present study is the first report wherein SWCNTs-Ag were first carboxylated using Tri sodium citrate (TSC) at 37 °C and then subsequently functionalized covalently with an effective antimicrobial peptide from Therapeutic Inc., TP359 (FSWCNTs-Ag). SWCNTs-Ag were also non covalently functionalized with TP359 by simple mixing (SWCNTs-Ag-M) and both, the FSWCNTs-Ag (covalent) and SWCNTs-Ag-M (non-covalent), were characterized by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visualization (UV-VIS) and transmission electron microscopy (TEM). Further the antibacterial activity of both and TP359 were investigated against two gram positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram negative (Salmonella enterica serovar Typhimurium and Escherichia coli) pathogens and the cellular toxicity of TP359 and FSWCNTs-Ag was compared with plain SWCNTs-Ag using murine macrophages and lung carcinoma cells. RESULTS: FT-IR analysis revealed that treatment with TSC successfully resulted in carboxylation of SWCNTs-Ag and the peptide was indeed attached to the SWCNTs-Ag evidenced by TEM images. More importantly, the present study results further showed that the minimum inhibitory concentration (MIC) of FSWCNTs-Ag were much lower (~7.8-3.9 µg/ml with IC50: ~4-5 µg/ml) compared to SWCNTs-Ag-M and plain SWCNTs-Ag (both 62.6 µg/ml, IC50: ~31-35 µg/ml), suggesting that the covalent conjugation of TP359 with SWCNTs-Ag was very effective on their counterparts. Additionally, FSWCNTs-Ag are non-toxic to the eukaryotic cells at their MIC concentrations (5-2.5 µg/ml) compared to SWCNTs-Ag (62.5 µg/ml). CONCLUSION: In conclusion, we demonstrated that covalent functionalization of SWCNTs-Ag and TP359 exhibited an additive antibacterial activity. This study described a novel approach to prepare SWCNT-Ag bio-conjugates without loss of antimicrobial activity and reduced toxicity, and this strategy will aid in the development of novel and biologically important nanomaterials.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Nanotubos de Carbono/química , Prata/química , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Citratos/química , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Nanotubos de Carbono/ultraestrutura , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento
7.
Nanomedicine ; 12(8): 2299-2310, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27381068

RESUMO

Respiratory syncytial virus (RSV) causes severe pneumonia and bronchiolitis in infants, children and older adults. The use of metallic nanoparticles as potential therapeutics is being explored against respiratory viruses like Influenza, Parainfluenza and Adenovirus. In this study, we showed that gold nanorods (GNRs) inhibit RSV in HEp-2 cells and BALB/c mice by 82% and 56%, respectively. The RSV inhibition correlated with marked upregulated antiviral genes due to GNR mediated TLR, NOD-like receptor and RIG-I-like receptor signaling pathways. Transmission electron microscopy of lungs showed GNRs in the endocytotic vesicles and histological analyses indicated infiltration by neutrophils, eosinophils and monocytes correlating with clearance of RSV. In addition, production of cytokines and chemokines in the lungs indicates recruitment of immune cells to counter RSV replication. To our knowledge, this is the first in vitro and in vivo report that provides possible antiviral mechanisms of GNRs against RSV.


Assuntos
Ouro/farmacologia , Imunidade Inata , Nanotubos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Animais , Ouro/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos NOD
8.
J Nanobiotechnology ; 13: 23, 2015 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25888864

RESUMO

BACKGROUND: Resistance of food borne pathogens such as Salmonella to existing antibiotics is of grave concern. Silver coated single walled carbon nanotubes (SWCNTs-Ag) have broad-spectrum antibacterial activity and may be a good treatment alternative. However, toxicity to human cells due to their physico-chemical properties is a serious public health concern. Although pegylation is commonly used to reduce metal nanoparticle toxicity, SWCNTs-Ag have not been pegylated as yet, and the effect of pegylation of SWCNTs-Ag on their anti-bacterial activity and cell cytotoxicity remains to be studied. Further, there are no molecular studies on the anti-bacterial mechanism of SWCNTs-Ag or their functionalized nanocomposites. MATERIALS AND METHODS: In this study we created novel pegylated SWCNTS-Ag (pSWCNTs-Ag), and employed 3 eukaryotic cell lines to evaluate their cytotoxicity as compared to plain SWCNTS-Ag. Simultaneously, we evaluated their antibacterial activity on Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) by the MIC and growth curve assays. In order to understand the possible mechanisms of action of both SWCNTs-Ag and pSWCNTs-Ag, we used electron microscopy (EM) and molecular studies (qRT-PCR). RESULTS: pSWCNTs-Ag inhibited Salmonella Typhimurium at 62.5 µg/mL, while remaining non-toxic to human cells. By comparison, plain SWCNTs-Ag were toxic to human cells at 62.5 µg/mL. EM analysis revealed that bacteria internalized either of these nanocomposites after the outer cell membranes were damaged, resulting in cell lysis or expulsion of cytoplasmic contents, leaving empty ghosts. The expression of genes regulating the membrane associated metabolic transporter system (artP, dppA, and livJ), amino acid biosynthesis (trp and argC) and outer membrane integrity (ompF) protiens, was significantly down regulated in Salmonella treated with both pSWCNTs-Ag and SWCNTs-Ag. Although EM analysis of bacteria treated with either SWCNTs-Ag or pSWCNTs-Ag revealed relatively similar morphological changes, the expression of genes regulating the normal physiological processes of bacteria (ybeF), quorum sensing (sdiA), outer membrane structure (safC), invasion (ychP) and virulence (safC, ychP, sseA and sseG) were exclusively down regulated several fold in pSWCNTs-Ag treated bacteria. CONCLUSIONS: Altogether, the present data shows that our novel pSWCNTs-Ag are non-toxic to human cells at their bactericidal concentration, as compared to plain SWCNTS-Ag. Therefore, pSWCNTs-Ag may be safe alternative antimicrobials to treat foodborne pathogens.


Assuntos
Antibacterianos/farmacologia , Nanotubos de Carbono , Salmonella typhimurium/efeitos dos fármacos , Prata/química , Animais , Antibacterianos/química , Linhagem Celular/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Polietilenoglicóis/química , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Toxicidade/métodos
9.
Nanomedicine ; 11(5): 1265-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25804413

RESUMO

Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. FROM THE CLINICAL EDITOR: Excessive exposure to the sun is known to increase the risk of skin cancer due to DNA damage. In this work, the authors tested the use of silver nanoparticles as protective agents against ultraviolet radiation. The positive results may open a door for the use of silver nanoparticle as novel agents in the future.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Nanopartículas Metálicas , Prata/farmacologia , Anticarcinógenos/química , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Reparo do DNA , Humanos , Queratinócitos/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Prata/química , Neoplasias Cutâneas/prevenção & controle , Raios Ultravioleta
10.
Nanomedicine ; 10(6): 1311-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24602605

RESUMO

PLA-PEG [poly(lactic acid)-poly (ethylene glycol)], a biodegradable copolymer, is underexploited for vaccine delivery although it exhibits enhanced biocompatibility and slow release immune-potentiating properties. We document here successful encapsulation of M278, a Chlamydia trachomatis MOMP (major outer-membrane protein) peptide, within PLA-PEG nanoparticles by size (~73-100nm), zeta potential (-16 mV), smooth morphology, encapsulation efficiency (~60%), slow release pattern, and non-toxicity to macrophages. Immunization of mice with encapsulated M278 elicited higher M278-specific T-cell cytokines [Th1 (IFN-γ, IL-2), Th17 (IL-17)] and antibodies [Th1 (IgG2a), Th2 (IgG1, IgG2b)] compared to bare M278. Encapsulated-M278 mouse serum inhibited Chlamydia infectivity of macrophages, with a concomitant transcriptional down-regulation of MOMP, its cognate TLR2 and CD80 co-stimulatory molecule. Collectively, encapsulated M278 potentiated crucial adaptive immune responses, which are required by a vaccine candidate for protective immunity against Chlamydia. Our data highlight PLA-PEG's potential for vaccines, which resides in its slow release and potentiating effects to bolster immune responses. FROM THE CLINICAL EDITOR: This study highlights the potential of a PLA-PEG-based nanoparticle formulation containing a major outer membrane protein of chlamydia trachomatis in inducing a sustained enhanced immune response, paving the way to the development of a vaccination strategy against this infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Infecções por Chlamydia/prevenção & controle , Chlamydia trachomatis/imunologia , Portadores de Fármacos/química , Lactatos/química , Nanopartículas/química , Polietilenoglicóis/química , Imunidade Adaptativa , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
11.
Pathog Dis ; 822024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38862192

RESUMO

To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Infecções por Chlamydia , Chlamydia muridarum , Citocinas , Camundongos Endogâmicos BALB C , Animais , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Chlamydia muridarum/imunologia , Citocinas/metabolismo , Infecções por Chlamydia/prevenção & controle , Infecções por Chlamydia/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Injeções Intramusculares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Imunização Secundária , Modelos Animais de Doenças , Imunogenicidade da Vacina , Injeções Subcutâneas , Nanopartículas/administração & dosagem , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Eficácia de Vacinas , Células Th1/imunologia , Nanovacinas
12.
Int J Nanomedicine ; 19: 1287-1301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348174

RESUMO

Introduction: Interleukin-10 (IL-10) is a key anti-inflammatory mediator in protecting host from over-exuberant responses to pathogens and play important roles in wound healing, autoimmunity, cancer, and homeostasis. However, its application as a therapeutic agent for biomedical applications has been limited due to its short biological half-life. Therefore, it is important to prolong the half-life of IL-10 to replace the current therapeutic application, which relies on administering large and repeated dosages. Therefore, not a cost-effective approach. Thus, studies that aim to address this type of challenges are always in need. Methods: Recombinant IL-10 was encapsulated in biodegradable nanoparticles (Poly-(Lactic-co-Glycolic Acid) and Chitosan)) by the double emulsion method and then characterized for size, surface charge, thermal stability, cytotoxicity, in vitro release, UV-visible spectroscopy, and Fourier Transform-Infrared Spectroscopy as well as evaluated for its anti-inflammatory effects. Bioactivity of encapsulated IL-10 was evaluated in vitro using J774A.1 macrophage cell-line and in vivo using BALB/c mice. Inflammatory cytokines (IL-6 and TNF-α) were quantified from culture supernatants using specific enzyme-linked immunosorbent assay (ELISA), and significance was analyzed using ANOVA. Results: We obtained a high 96% encapsulation efficiency with smooth encapsulated IL-10 nanoparticles of ~100-150 nm size and release from nanoparticles as measurable to 22 days. Our result demonstrated that encapsulated IL-10 was biocompatible and functional by reducing the inflammatory responses induced by LPS in macrophages. Of significance, we also proved the functionality of encapsulated IL-10 by its capacity to reduce inflammation in BALB/c mice as provoked by Chlamydia trachomatis, an inflammatory sexually transmitted infectious bacterium. Discussion: Collectively, our results show the successful IL-10 encapsulation, slow release to prolong its biological half-life and reduce inflammatory cytokines IL-6 and TNF production in vitro and in mice. Our results serve as proof of concept to further explore the therapeutic prospective of encapsulated IL-10 for biomedical applications, including inflammatory diseases.


Assuntos
Quitosana , Nanopartículas , Camundongos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Interleucina-10 , Ácido Láctico/química , Quitosana/química , Ácido Poliglicólico/química , Interleucina-6 , Citocinas , Nanopartículas/química , Inflamação/tratamento farmacológico , Chlamydia trachomatis , Anti-Inflamatórios/farmacologia
13.
Mediators Inflamm ; 2013: 102457, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766556

RESUMO

Chlamydia trachomatis, the agent of bacterial sexually transmitted infections, can manifest itself as either acute cervicitis, pelvic inflammatory disease, or a chronic asymptomatic infection. Inflammation induced by C. trachomatis contributes greatly to the pathogenesis of disease. Here we evaluated the anti-inflammatory capacity of naringenin, a polyphenolic compound, to modulate inflammatory mediators produced by mouse J774 macrophages infected with live C. trachomatis. Infected macrophages produced a broad spectrum of inflammatory cytokines (GM-CSF, TNF, IL-1ß, IL-1α, IL-6, IL-12p70, and IL-10) and chemokines (CCL4, CCL5, CXCL1, CXCL5, and CXCL10) which were downregulated by naringenin in a dose-dependent manner. Enhanced protein and mRNA gene transcript expressions of TLR2 and TLR4 in addition to the CD86 costimulatory molecule on infected macrophages were modulated by naringenin. Pathway-specific inhibition studies disclosed that p38 mitogen-activated-protein kinase (MAPK) is involved in the production of inflammatory mediators by infected macrophages. Notably, naringenin inhibited the ability of C. trachomatis to phosphorylate p38 in macrophages, suggesting a potential mechanism of its attenuation of concomitantly produced inflammatory mediators. Our data demonstrates that naringenin is an immunomodulator of inflammation triggered by C. trachomatis, which possibly may be mediated upstream by modulation of TLR2, TLR4, and CD86 receptors on infected macrophages and downstream via the p38 MAPK pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/patogenicidade , Flavanonas/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/metabolismo , Animais , Linhagem Celular , Chlamydia trachomatis/imunologia , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-10/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Nanotechnology ; 23(32): 325101, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22824940

RESUMO

Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 µg ml(-1) maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (∼200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 µg ml (-1) to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (∼98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 µg ml (-1) of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml(-1)) and IL-12p40 (674 pg ml(-1)) as well as nitric oxide (8 µM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Chlamydia trachomatis/metabolismo , Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Peptídeos/química , Ácido Poliglicólico/química , Análise de Variância , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/farmacocinética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlamydia trachomatis/química , Relação Dose-Resposta Imunológica , Portadores de Fármacos/farmacologia , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Ácido Láctico/farmacologia , Camundongos , Microscopia de Fluorescência , Óxido Nítrico/metabolismo , Tamanho da Partícula , Peptídeos/imunologia , Peptídeos/farmacocinética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Vacinas Sintéticas
15.
Mediators Inflamm ; 2012: 520174, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529524

RESUMO

Chlamydia trachomatis infects macrophages and epithelial cells evoking acute and chronic inflammatory conditions, which, if not controlled, may put patients at risk for major health issues such as pelvic inflammatory disease, chronic abdominal pain, and infertility. Here we hypothesized that IL-10, with anti-inflammatory properties, will inhibit inflammatory mediators that are produced by innate immune cells exposed to C. trachomatis. We used human epithelial (HeLa) cells and mouse J774 macrophages as target cells along with live and UV-inactivated C. trachomatis mouse pneumonitis (MoPn) as stimulants. Confocal microscopy employing an anti-Chlamydia antibody confirmed cells infectivity by day 1, which persisted up to day 3. Kinetics studies revealed that live C. trachomatis induced TNF, IL-6, and IL-8, as a function of time, with day-2 infection inducing the highest cytokine levels. Exogenous IL-10 inhibited TNF, IL-6, and IL-8 as secreted by day-2 infected cells. Similarly, IL-10 diminished cytokine levels as produced by macrophages exposed to UV-inactivated Chlamydia, suggesting the IL-10-mediated inhibition of cytokines is not restricted to live organisms. Our data imply that IL-10 is an important regulator of the initial inflammatory response to C. trachomatis infection and that further investigations be made into IL-10 use to combat inflammation induced by this bacterium.


Assuntos
Chlamydia trachomatis/metabolismo , Células Epiteliais/citologia , Interleucina-10/metabolismo , Macrófagos/citologia , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Células HeLa , Humanos , Inflamação , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Microscopia Confocal/métodos , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Raios Ultravioleta
16.
Infect Immun ; 79(12): 4876-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21947773

RESUMO

Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1ß, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation.


Assuntos
Borrelia burgdorferi/fisiologia , Perfilação da Expressão Gênica , Interleucina-10/farmacologia , Doença de Lyme/metabolismo , Macrófagos/metabolismo , Animais , Borrelia burgdorferi/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/prevenção & controle , Doença de Lyme/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
17.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924320

RESUMO

Capsules are one of the major solid dosage forms available in a variety of compositions and shapes. Developments in this dosage form are not new, but the production of non-gelatin capsules is a recent trend. In pharmaceutical as well as other biomedical research, alginate has great versatility. On the other hand, the use of inorganic material to enhance material strength is a common research topic in tissue engineering. The research presented here is a combination of qualities of alginate and montmorillonite (MMT). These two materials were used in this research to produce a soft non-gelatin modified-release capsule. Moreover, the research describes a facile benchtop production of these capsules. The produced capsules were critically analyzed for their appearance confirming resemblance with marketed capsules, functionality in terms of drug encapsulation, as well as release and durability.

18.
Front Immunol ; 12: 660932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936096

RESUMO

Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Genitália/efeitos dos fármacos , Nanopartículas/química , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/administração & dosagem , Citocinas/imunologia , Feminino , Genitália/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação
19.
Biotechnol Lett ; 31(10): 1511-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19543855

RESUMO

An open reading frame representing cDNA from a hemagglutinin (HA) encoding gene of a low pathogenic avian influenza virus (AIV) subtype H10N7 was cloned in the pNMT1-TOPO vector under the control of thiamine response promoter. This construct was designated as pNMT1-HA. The pNMT1-HA construct was transformed into Schizosaccharomyces pombe for expression of HA antigen. The correct expression of recombinant HA protein was confirmed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. The level of expression of recombinant HA protein was approximately 0.2% of total soluble protein. Purified yeast-derived recombinant HA protein showed hemagglutination activity. The 2-D and 3-D scanning images of recombinant HA protein were observed with an atomic force microscope (AFM). The structural integrity of the HA protein under AFM and hemagglutination activity provided support that the recombinant HA protein may be suitable for development of AIV subunit vaccine for mass administration to poultry.


Assuntos
Hemaglutinação , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Vírus da Influenza A/genética , Sequência de Aminoácidos , Western Blotting , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Hemaglutininas Virais/genética , Microscopia de Força Atômica , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Schizosaccharomyces/genética
20.
Nanomedicine ; 5(4): 463-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19341819

RESUMO

This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine. Antigenic regions of RSV F, M2, and G genes were cloned into the human cytomegalovirus promoter-based constitutive expression vector, resulting in a DNA vaccine vector named DR-FM2G. This vector was used to formulate DNA-chitosan nanoparticles (DCNPs) using a complex coacervation process that yielded an encapsulation efficiency of 94.7%. The DCNP sizes ranged from 80 to 150 nm with uniform size distribution and spherical shape. DNA release was between 50% and 60% when DCNPs were incubated with similar gastrointestinal fluid (pH 2), whereas 21% to 25% of DNA was released from DCNPs in 30 minutes at pH 10. Differential scanning calorimetry showed DCNPs to be more stable than naked DNA or chitosan, offering protection from DNA degradation by nucleases. DCNPs were not toxic to cells when used at concentrations < or =400 microg/mL. Immunohistochemical and real-time polymerase chain reaction results showed a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA. FROM THE CLINICAL EDITOR: This study evaluated the efficiency of chitosan-encapsulated DNA-based respiratory syncytial virus (RSV) vaccine, showing a higher level of RSV protein expression in mouse tissues given when DCNPs were injected intravenously as compared with naked DNA.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , Nanopartículas/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Animais , Células COS , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Quitosana/farmacologia , Chlorocebus aethiops , DNA Viral/administração & dosagem , DNA Viral/imunologia , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Imuno-Histoquímica , Injeções Intravenosas , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Propriedades de Superfície/efeitos dos fármacos , Transfecção , Vacinas de DNA/imunologia , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA