Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 477(20): 4001-4019, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33000860

RESUMO

The toxin-antitoxin (TA) systems are small operon systems that are involved in important physiological processes in bacteria such as stress response and persister cell formation. Escherichia coli HigBA complex belongs to the type II TA systems and consists of a protein toxin called HigB and a protein antitoxin called HigA. The toxin HigB is a ribosome-dependent endoribonuclease that cleaves the translating mRNAs at the ribosome A site. The antitoxin HigA directly binds the toxin HigB, rendering the HigBA complex catalytically inactive. The existing biochemical and structural studies had revealed that the HigBA complex forms a heterotetrameric assembly via dimerization of HigA antitoxin. Here, we report a high-resolution crystal structure of E. coli HigBA complex that revealed a well-ordered DNA binding domain in HigA antitoxin. Using SEC-MALS and ITC methods, we have determined the stoichiometry of complex formation between HigBA and a 33 bp DNA and report that HigBA complex as well as HigA homodimer bind to the palindromic DNA sequence with nano molar affinity. Using E. coli growth assays, we have probed the roles of key, putative active site residues in HigB. Spectroscopic methods (CD and NMR) and molecular dynamics simulations study revealed intrinsic dynamic in antitoxin in HigBA complex, which may explain the large conformational changes in HigA homodimer in free and HigBA complexes observed previously. We also report a truncated, heterodimeric form of HigBA complex that revealed possible cleavage sites in HigBA complex, which can have implications for its cellular functions.


Assuntos
Antitoxinas/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Óperon/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos/genética , Multimerização Proteica , Proteínas Recombinantes , Regulação para Cima
2.
Structure ; 32(6): 706-714.e3, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38579707

RESUMO

Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Histona-Lisina N-Metiltransferase , Ligação Proteica , Humanos , Dioxigenases/metabolismo , Dioxigenases/química , Dioxigenases/genética , Animais , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Sítios de Ligação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Modelos Moleculares , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética
3.
Nat Commun ; 15(1): 4883, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849395

RESUMO

The human methyltransferase and transcriptional coactivator MLL4 and its paralog MLL3 are frequently mutated in cancer. MLL4 and MLL3 monomethylate histone H3K4 and contain a set of uncharacterized PHD fingers. Here, we report a novel function of the PHD2 and PHD3 (PHD2/3) fingers of MLL4 and MLL3 that bind to ASXL2, a component of the Polycomb repressive H2AK119 deubiquitinase (PR-DUB) complex. The structure of MLL4 PHD2/3 in complex with the MLL-binding helix (MBH) of ASXL2 and mutational analyses reveal the molecular mechanism which is conserved in homologous ASXL1 and ASXL3. The native interaction of the Trithorax MLL3/4 complexes with the PR-DUB complex in vivo depends solely on MBH of ASXL1/2, coupling the two histone modifying activities. ChIP-seq analysis in embryonic stem cells demonstrates that MBH of ASXL1/2 is required for the deubiquitinase BAP1 recruitment to MLL4-bound active enhancers. Our findings suggest an ASXL1/2-dependent functional link between the MLL3/4 and PR-DUB complexes.


Assuntos
Proteínas de Ligação a DNA , Histona-Lisina N-Metiltransferase , Ligação Proteica , Proteínas Repressoras , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Humanos , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Elementos Facilitadores Genéticos , Células HEK293 , Dedos de Zinco PHD , Histonas/metabolismo
4.
J Vector Borne Dis ; 50(3): 155-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24220073

RESUMO

This review article discusses the current scenario of the national and international burden due to lymphatic filariasis (LF) and describes the active elimination programmes for LF and their achievements to eradicate this most debilitating disease from the earth. Since, bioinformatics is a rapidly growing field of biological study, and it has an increasingly significant role in various fields of biology. We have reviewed its leading involvement in the filarial research using different approaches of bioinformatics and have summarized available existing drugs and their targets to re-examine and to keep away from the resisting conditions. Moreover, some of the novel drug targets have been assembled for further study to design fresh and better pharmacological therapeutics. Various bioinformatics-based web resources, and databases have been discussed, which may enrich the filarial research.


Assuntos
Brugia Malayi/genética , Biologia Computacional , Filariose Linfática/parasitologia , Filaricidas/farmacologia , Genoma Helmíntico/genética , Wuchereria bancrofti/genética , Animais , Brugia Malayi/efeitos dos fármacos , Descoberta de Drogas , Filariose Linfática/tratamento farmacológico , Proteínas de Helminto/efeitos dos fármacos , Proteínas de Helminto/genética , Humanos , Wuchereria bancrofti/efeitos dos fármacos
5.
Elife ; 122023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642294

RESUMO

Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.


Assuntos
Besouros , Mycobacterium tuberculosis , Animais , Camundongos , Mycobacterium tuberculosis/genética , Propionatos , Espécies Reativas de Oxigênio , Homeostase , Oxirredução , Mutagênese
6.
J Biomol Struct Dyn ; 36(3): 575-589, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132614

RESUMO

Serine protease cleaved-complement component 4 (C4) at sessile loop, which is significant for completion of lectin and classical complement pathways at the time of infections. The co-crystalized structure of C4 with Mannose-binding protein-associated serine protease 2 (MASP2) provided the structural and functional aspects of its interaction and underlined the C4 activation by MASP2. The same study also revealed the significance of complement control protein (CCP) domain through mutational study, where mutated CCP domain led to the inhibition of C4 activation. However, the interaction of trypsin serine domain with C4α sessile loop revealed another aspect of C4 activation. The human C4 cleavage by Trypsin (Tryp) in a control manner was explored but not yet revealed the identification of cleaved fragments. Hence, the present study investigated the Tryp mediated C4 activation using computational approach (protein-protein docking and molecular dynamics simulation) by comparing with the co-crystalized structure of C4-MASP2. Docking result identified the crucial interacting residues Gly219, Gln178, and Asn102 of Tryp catalytic pocket which were interacting with Arg756 and Glu759 (sessile loop) of α-Chain (C4) in a similar manner to C4-MASP2 co-crystallized complex. Moreover, MD simulation results and mutational study underlined the conformational rearrangements in the C4 due to the Tryp interaction. Comparative analysis of C4 alone, C4-Tryp, and C4-MASP2 revealed the impact of Tryp on C4 was similar as MASP2. These studies designate the role of sessile loop in the interaction with serine domain, which could be useful to understand the various interactions of C4 with other complement components.


Assuntos
Complemento C4/química , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Conformação Proteica , Serina Proteases/química , Ativação do Complemento/genética , Cristalografia por Raios X , Humanos , Lectinas/química , Simulação de Acoplamento Molecular , Ligação Proteica , Mapas de Interação de Proteínas , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA