Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochimie ; 157: 92-101, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30419262

RESUMO

Short upstream open reading frames (uORFs) are the most prevalent cis-acting regulatory elements in the mammalian transcriptome which can orchestrate mRNA translation. Apart from being "passive roadblocks" that decrease expression of the main coding regions, particular uORFs can serve as specific sensors for changing conditions, thus regulating translation in response to cell stress. Here we report a novel uORF-based regulatory mechanism that is employed under conditions of hyperosmotic stress by at least two human mRNAs, coding for translation reinitiation/recycling factor eIF2D and E3 ubiquitin ligase MDM2. This novel mode of translational control selectively downregulates their expression and requires as few as one uORF. Using a set of reporter mRNAs and fleeting mRNA transfection (FLERT) technique, we provide evidence that the phenomenon does not rely on delayed reinitiation, altered AUG recognition, ribosome stalling, mRNA destabilization or other known mechanisms. Instead, it is based on events taking place at uORF stop codon or immediately downstream. Functional aspects and implications of the novel regulatory mechanism to cell physiology are discussed.


Assuntos
Códon de Iniciação/metabolismo , Fator de Iniciação 2 em Eucariotos/biossíntese , Fases de Leitura Aberta , Pressão Osmótica , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Códon de Iniciação/genética , Fator de Iniciação 2 em Eucariotos/genética , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Estabilidade de RNA
2.
Data Brief ; 23: 103701, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30815525

RESUMO

TMA20 (MCT-1), TMA22 (DENR) and TMA64 (eIF2D) are eukaryotic translation factors involved in ribosome recycling and re-initiation. They operate with P-site bound tRNA in post-termination or (re-)initiation translation complexes, thus participating in the removal of 40S ribosomal subunit from mRNA stop codons after termination and controlling translation re-initiation on mRNAs with upstream open reading frames (uORFs), as well as de novo initiation on some specific mRNAs. Here we report ribosomal profiling data of S.cerevisiae strains with individual deletions of TMA20, TMA64 or both TMA20 and TMA64 genes. We provide RNA-Seq and Ribo-Seq data from yeast strains grown in the rich YPD or minimal SD medium. We illustrate our data by plotting differential distribution of ribosomal-bound mRNA fragments throughout uORFs in 5'-untranslated region (5' UTR) of GCN4 mRNA and on mRNA transcripts encoded in MAT locus in the mutant and wild-type strains, thus providing a basis for investigation of the role of these factors in the stress response, mating and sporulation. We also document a shift of transcription start site of the APC4 gene which occurs when the neighboring TMA64 gene is replaced by the standard G418-resistance cassette used for the creation of the Yeast Deletion Library. This shift results in dramatic deregulation of the APC4 gene expression, as revealed by our Ribo-Seq data, which can be probably used to explain strong genetic interactions of TMA64 with genes involved in the cell cycle and mitotic checkpoints. Raw RNA-Seq and Ribo-Seq data as well as all gene counts are available in NCBI Gene Expression Omnibus (GEO) repository under GEO accession GSE122039 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122039).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA