Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 12(8): 6672-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22962805

RESUMO

In this study we report an experimental approach capable of tuning dipolar interactions in hybrid magnetic nanofilms produced via layer-by-layer assembly of positively-charged maghemite nanoparticles and sodium sulfonated polystyrene onto glass and silicon substrates. Morphological and magnetic properties of the as prepared nanofilms were determined by Raman spectroscopy, atomic force microscopy, conventional and SQUID magnetometry. Maghemite nanoparticles form densely packed layers with voids between particles being filled by polymeric material as observed in atomic force microscopy images. Magnetic hysteresis loops and zero-field-cooled/field-cooled magnetization curves reveal a superparamagnetic behavior at room temperature. The energy barrier for the magnetic moment reversal of the nanofilms has been determined from the frequency dependent ac susceptibility and is related to the gamma-Fe2O3 nanoparticles concentration used in the colloidal dispersion throughout film fabrication. Variations on the interparticle distances have a direct effect on the interparticle dipolar interactions. A less concentrated colloid gives rise to large separated nanoparticles inside the nanofilm with a consequent reduction on the energy barrier for the magnetic moment reversal. The fabrication process exploring the control of the nanoparticle concentration can thus be used to tune the magnetic dipolar interactions in the nanofilms.

2.
J Nanosci Nanotechnol ; 10(4): 2679-85, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355484

RESUMO

In this study we describe the fabrication and characterization of nanocomposites consisting of layer-by-layer assembled polyaniline, sulfonated polystyrene, and maghemite nanoparticle layers. In order to assemble the starting components via electrostatic interaction, stable magnetic fluid containing maghemite nanoparticles (d approximately = 7 nm) with either positive or negative surface charges was used as source of nanoparticles for the layer-by-layer assembly. The structure, morphology, electrical and magnetic properties of such nanocomposite films were investigated by UV-Vis spectroscopy, atomic force microscopy, electrical, and magnetic measurements. The amount of PANI, PSS and maghemite nanoparticles within the nanocomposite films increased almost linearly with the number of deposited layers. Atomic force microscopy image of typical polyaniline/maghemite nanocomposites reveal nanoparticles adsorbed all over the film surface. The as-produced nanocomposite exhibits electrical conductivity and superparamagnetism behavior at room temperature, the latter confirmed by the absence of magnetic hysteresis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA