Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 36(4): 547-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19189144

RESUMO

Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning calorimetry. The number-average molecular weights (M (n)) of copolymers ranged from 260 x 10(3) to 590 x 10(3)Da, and the polydispersities (M (w)/M (n)) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition, the increase in 4HB composition affected the randomness of copolymer, melting temperature (T (m)), glass transition temperature (T (g)), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol% but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast cells.


Assuntos
Meios de Cultura/metabolismo , Cupriavidus/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Animais , Biopolímeros/química , Biopolímeros/metabolismo , Linhagem Celular , Meios de Cultura/química , Cupriavidus/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Hidroxibutiratos/farmacologia , Camundongos , Peso Molecular , Poliésteres/farmacologia
2.
Biotechnol Prog ; 30(6): 1469-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25181613

RESUMO

This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.


Assuntos
Anti-Infecciosos/metabolismo , Quitosana/metabolismo , Hidroxibutiratos/metabolismo , Nanocompostos/química , Poliésteres/metabolismo , Prata/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Poliésteres/química , Poliésteres/farmacologia , Prata/química , Prata/farmacologia , Propriedades de Superfície , Difração de Raios X
3.
J Colloid Interface Sci ; 328(1): 81-91, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18822418

RESUMO

Grafting of free maleimide and epoxide pendant groups onto the surface of approximately 7-nm silica nanoparticles was investigated. Glycidyloxypropyl groups (3-glycidyloxypropyltrimethoxysilane and 3-aminopropyltrimethoxysilane) that carried epoxide groups and aminopropyl groups were grafted to the silica surface with the help of condensation reactions. Maleimide groups [1,1(')-(methylenedi-4,1-phenelene) bismaleimide] were introduced to the silica surface via nucleophilic addition reaction with the aminopropyl groups pre-grafted onto the surface. The grafted silica samples were characterized using CHN, FTIR, DSC, TGA-FTIR, and 13C and 29Si CP/MAS NMR spectroscopy. NMR analyses revealed that all the functional groups were covalently bonded to the silica surface and most of the maleimide and epoxide rings remained intact on surface. DSC analysis showed that the epoxide groups were more reactive than the maleimide groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA