Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(12): 7801-7808, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30423252

RESUMO

Existing methods of correcting for chromatic aberrations in optical systems are limited to two approaches: varying the material dispersion in refractive lenses or incorporating grating dispersion via diffractive optical elements. Recently, single-layer broadband achromatic metasurface lenses have been demonstrated but are limited to diameters on the order of 100 µm due to the large required group delays. Here, we circumvent this limitation and design a metacorrector by combining a tunable phase and artificial dispersion to correct spherical and chromatic aberrations in a large spherical plano-convex lens. The tunability results from a variation in light confinement in sub-wavelength waveguides by locally tailoring the effective refractive index. The effectiveness of this approach is further validated by designing a metacorrector, which greatly increases the bandwidth of a state-of-the-art immersion objective (composed of 14 lenses and 7 types of glasses) from violet to near-infrared wavelengths. This concept of hybrid metasurface-refractive optics combines the advantages of both technologies in terms of size, scalability, complexity, and functionality.

2.
Nat Nanotechnol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048705

RESUMO

Active metasurfaces enable dynamic manipulation of the scattered electromagnetic wavefront by spatially varying the phase and amplitude across arrays of subwavelength scatterers, imparting momentum to outgoing light. Similarly, periodic temporal modulation of active metasurfaces allows for manipulation of the output frequency of light. Here we combine spatial and temporal modulation in electrically modulated reflective metasurfaces operating at 1,530 nm to generate and diffract a spectrum of sidebands at megahertz frequencies. Temporal modulation with tailored waveforms enables the design of a spectrum of sidebands. By impressing a spatial phase gradient on the metasurface, we can diffract selected combinations of sideband frequencies. Combining active temporal and spatial variation can enable unique optical functions, such as frequency mixing, harmonic beam steering or shaping, and breaking of Lorentz reciprocity.

3.
Nat Commun ; 10(1): 355, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664662

RESUMO

Metasurfaces have attracted widespread attention due to an increasing demand of compact and wearable optical devices. For many applications, polarization-insensitive metasurfaces are highly desirable, and appear to limit the choice of their constituent elements to isotropic nanostructures. This greatly restricts the number of geometric parameters available in design. Here, we demonstrate a polarization-insensitive metalens using otherwise anisotropic nanofins which offer additional control over the dispersion and phase of the output light. As a result, we can render a metalens achromatic and polarization-insensitive across nearly the entire visible spectrum from wavelength λ = 460 nm to 700 nm, while maintaining diffraction-limited performance. The metalens is comprised of just a single layer of TiO2 nanofins and has a numerical aperture of 0.2 with a diameter of 26.4 µm. The generality of our polarization-insensitive design allows it to be implemented in a plethora of other metasurface devices with applications ranging from imaging to virtual/augmented reality.

4.
J Colloid Interface Sci ; 494: 397-409, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28187295

RESUMO

Replacing the widespread use of petroleum-derived non-biodegradable materials with green and sustainable materials is a pressing challenge that is gaining increasing attention by the scientific community. One such system is cellulose nanocrystal (CNC) derived from acid hydrolysis of cellulosic materials, such as plants, tunicates and agriculture biomass. The utilization of colloidal CNCs can aid in the reduction of carbon dioxide that is responsible for global warming and climate change. CNCs are excellent candidates for the design and development of functional nanomaterials in many applications due to several attractive features, such as high surface area, hydroxyl groups for functionalization, colloidal stability, low toxicity, chirality and mechanical strength. Several large scale manufacturing facilities have been commissioned to produce CNCs of up to 1000kg/day, and this has generated increasing interests in both academic and industrial laboratories. In this feature article, we will describe the recent development of functionalized cellulose nanocrystals for several important applications in ours and other laboratories. We will highlight some challenges and offer perspectives on the potentials of these sustainable nanomaterials.


Assuntos
Plásticos Biodegradáveis/química , Celulose/química , Celulose/síntese química , Nanopartículas/química , Nanoestruturas/química , Anti-Infecciosos/química , Emulsões , Corantes Fluorescentes/química , Química Verde , Hidrólise , Fenômenos Mecânicos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA