Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 350(3): 691-700, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25022513

RESUMO

Ergothioneine is a thiourea derivative of histidine found in food, especially mushrooms. Experiments in cell-free systems and chemical assays identified this compound as a powerful antioxidant. Experiments were designed to test the ability of endothelial cells to take up ergothioneine and hence benefit from protection against oxidative stress. Reverse-transcription polymerase chain reaction and Western blotting demonstrated transcription and translation of an ergothioneine transporter in human brain microvascular endothelial cells (HBMECs). Uptake of [(3)H]ergothioneine occurred by the organic cation transporter novel type-1 (OCTN-1), was sodium-dependent, and was reduced when expression of OCTN-1 was silenced by small interfering RNA (siRNA). The effect of ergothioneine on the production of reactive oxygen species (ROS) in HBMECs was measured using dichlorodihydrofluorescein and lucigenin, and the effect on cell viability was studied using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. ROS production and cell death induced by pyrogallol, xanthine oxidase plus xanthine, and high glucose were suppressed by ergothioneine. The antioxidant and cytoprotective effects of ergothioneine were abolished when OCTN-1 was silenced using siRNA. The expression of NADPH oxidase 1 was decreased, and those of glutathione reductase, catalase, and superoxide dismutase enhanced by the compound. In isolated rat basilar arteries, ergothioneine attenuated the reduction in acetylcholine-induced relaxation caused by pyrogallol, xanthine oxidase plus xanthine, or incubation in high glucose. Chronic treatment with the compound improved the response to acetylcholine in arteries of rats with streptozotocin-induced diabetes. In summary, ergothioneine is taken up by endothelial cells via OCTN-1, where the compound then protects against oxidative stress, curtailing endothelial dysfunction.


Assuntos
Citoproteção/fisiologia , Células Endoteliais/metabolismo , Ergotioneína/metabolismo , Ergotioneína/farmacologia , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Citoproteção/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
2.
J Cardiovasc Pharmacol ; 59(1): 10-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21266914

RESUMO

Adenosine modulates various vascular functions such as vasodilatation and anti-inflammation. The local concentration of adenosine in the vicinity of adenosine receptors is fine tuned by 2 classes of nucleoside transporters: equilibrative nucleoside transporters (ENTs) and concentrative nucleoside transporters (CNTs). In vascular smooth muscle cells, 95% of adenosine transport is mediated by ENT-1 and the rest by ENT-2. In endothelial cells, 60%, 10%, and 30% of adenosine transport are mediated by ENT-1, ENT-2, and CNT-2, respectively. In vitro studies show that glucose per se increases the expression level of ENT-1 via mitogen-activating protein kinase-dependent pathways. Similar results have been demonstrated in diabetic animal models. Hypertension is associated with the increased expression of CNT-2. It has been speculated that the increase in the activities of ENT-1 and CNT-2 may reduce the availability of adenosine to adenosine receptors, thereby weakening the vascular functions of adenosine. This may explain why patients with diabetes and hypertension suffer greater morbidity from ischemia and atherosclerosis. No oral hypoglycemic agents can inhibit ENTs, but an exception is troglitazone (a thiazolidinedione that has been withdrawn from the market). ENTs are also sensitive to dihydropyridine-type calcium-channel blockers, particularly nimodipine, which can inhibit ENT-1 in the nanomolar range. Those calcium-channel blockers are noncompetitive inhibitors of ENTs, probably working through the reversible interactions with allosteric sites. The nonsteroidal anti-inflammatory drug sulindac sulfide is a competitive inhibitor of ENT-1. In addition to their original pharmacological actions, it is believed that the drugs mentioned above may regulate vascular functions through potentiation of the effects of adenosine.


Assuntos
Adenosina/metabolismo , Proteínas de Transporte de Nucleosídeo Equilibrativas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Doenças Vasculares , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA