Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511103

RESUMO

Extracellular vesicles (EVs) are nanoparticles containing various bioactive cargos-e.g., proteins, RNAs, and lipids-that are released into the environment by all cell types. They are involved in, amongst other functions, intercellular communication. This article presents studies on EVs produced by the probiotic yeast Saccharomyces boulardii CNCM I-745. The size distribution and concentration of EVs in the liquid culture of yeast were estimated. Moreover, the vesicles of S. boulardii were tested for their cytotoxicity against three model human intestinal cell lines. This study did not show any significant negative effect of yeast EVs on these cells under tested conditions. In addition, EVs of S. boulardii were verified for their ability to internalize in vitro with human cells and transfer their cargo. The yeast vesicles were loaded with doxorubicin, an anticancer agent, and added to the cellular cultures. Subsequently, microscopic observations revealed that these EVs transferred the compound to human intestinal cell lines. A cytotoxicity test confirmed the activity of the transferred doxorubicin. Detailed information about the proteins present in EVs might be important in terms of exploring yeast EVs as carriers of active molecules. Thus, proteomic analysis of the EV content was also conducted within the present study, and it allowed the identification of 541 proteins after matching them to the Saccharomyces Genome Database (SGD). Altogether, this study provides strong evidence that the EVs of the probiotic CNCM I-745 strain could be considered a drug delivery system.


Assuntos
Vesículas Extracelulares , Probióticos , Humanos , Saccharomyces cerevisiae , Proteômica , Vesículas Extracelulares/metabolismo , Probióticos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511532

RESUMO

Under nutrient deficiency or starvation conditions, the mobilization of storage compounds during seed germination is enhanced to primarily supply respiratory substrates and hence increase the potential of cell survival. Nevertheless, we found that, under sugar starvation conditions in isolated embryonic axes of white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet) cultured in vitro for 96 h, the disruption of lipid breakdown occurs, as was reflected in the higher lipid content in the sugar-starved (-S) than in the sucrose-fed (+S) axes. We postulate that pexophagy (autophagic degradation of the peroxisome-a key organelle in lipid catabolism) is one of the reasons for the disruption in lipid breakdown under starvation conditions. Evidence of pexophagy can be: (i) the higher transcript level of genes encoding proteins of pexophagy machinery, and (ii) the lower content of the peroxisome marker Pex14p and its increase caused by an autophagy inhibitor (concanamycin A) in -S axes in comparison to the +S axes. Additionally, based on ultrastructure observation, we documented that, under sugar starvation conditions lipophagy (autophagic degradation of whole lipid droplets) may also occur but this type of selective autophagy seems to be restricted under starvation conditions. Our results also show that autophagy occurs at the very early stages of plant growth and development, including the cells of embryonic seed organs, and allows cell survival under starvation conditions.


Assuntos
Lupinus , Açúcares , Açúcares/metabolismo , Lupinus/metabolismo , Carboidratos , Sementes/metabolismo , Autofagia , Lipídeos
3.
Plant Cell Physiol ; 62(4): 693-707, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33594440

RESUMO

The disruption of the sumoylation pathway affects processes controlled by the two phototropins (phots) of Arabidopsis thaliana, phot1 and phot2. Phots, plant UVA/blue light photoreceptors, regulate growth responses and fast movements aimed at optimizing photosynthesis, such as phototropism, chloroplast relocations and stomatal opening. Sumoylation is a posttranslational modification, consisting of the addition of a SUMO (SMALL UBIQUITIN-RELATED MODIFIER) protein to a lysine residue in the target protein. In addition to affecting the stability of proteins, it regulates their activity, interactions and subcellular localization. We examined physiological responses controlled by phots, phototropism and chloroplast movements, in sumoylation pathway mutants. Chloroplast accumulation in response to both continuous and pulse light was enhanced in the E3 ligase siz1 mutant, in a manner dependent on phot2. A significant decrease in phot2 protein abundance was observed in this mutant after blue light treatment both in seedlings and mature leaves. Using plant transient expression and yeast two-hybrid assays, we found that phots interacted with SUMO proteins mainly through their N-terminal parts, which contain the photosensory LOV domains. The covalent modification in phots by SUMO was verified using an Arabidopsis sumoylation system reconstituted in bacteria followed by the mass spectrometry analysis. Lys 297 was identified as the main target of SUMO3 in the phot2 molecule. Finally, sumoylation of phot2 was detected in Arabidopsis mature leaves upon light or heat stress treatment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligases/genética , Ligases/metabolismo , Lisina/metabolismo , Mutação , Fototropismo/genética , Fototropismo/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Plântula/genética , Plântula/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação
4.
Plant Cell Physiol ; 61(1): 144-157, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560399

RESUMO

Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs comprising a premature translation termination codon. The adenosine triphosphate (ATP)-dependent RNA helicase up-frameshift 1 (UPF1) is a major NMD factor in all studied organisms; however, the complexity of this mechanism has not been fully characterized in plants. To identify plant NMD factors, we analyzed UPF1-interacting proteins using tandem affinity purification coupled to mass spectrometry. Canonical members of the NMD pathway were found along with numerous NMD candidate factors, including conserved DEA(D/H)-box RNA helicase homologs of human DDX3, DDX5 and DDX6, translation initiation factors, ribosomal proteins and transport factors. Our functional studies revealed that depletion of DDX3 helicases enhances the accumulation of NMD target reporter mRNAs but does not result in increased protein levels. In contrast, silencing of DDX6 group leads to decreased accumulation of the NMD substrate. The inhibitory effect of DDX6-like helicases on NMD was confirmed by transient overexpression of RH12 helicase. These results indicate that DDX3 and DDX6 helicases in plants have a direct and opposing contribution to NMD and act as functional NMD factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , RNA Helicases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Códon sem Sentido , RNA Helicases DEAD-box , Regulação da Expressão Gênica de Plantas , Humanos , Folhas de Planta/metabolismo , Proteínas Proto-Oncogênicas , RNA Helicases/genética , RNA Mensageiro , Homologia de Sequência , Nicotiana/genética
5.
FASEB J ; 30(11): 3810-3821, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27530978

RESUMO

Cystathionine ß-synthase (CBS) deficiency, a genetic disorder in homocysteine (Hcy) metabolism in humans, elevates plasma Hcy-thiolactone and leads to connective tissue abnormalities that affect the cardiovascular and skeletal systems. However, the underlying mechanism of these abnormalities is not understood. Hcy-thiolactone has the ability to form isopeptide bonds with protein lysine residues, which generates N-homocysteinylated protein. Because lysine residues are involved in collagen cross-linking, N-homocysteinylation of these lysines should impair cross-linking. Using a Tg-I278T Cbs-/- mouse model of hyperhomocysteinemia (HHcy) which replicates the connective tissue abnormalities observed in CBS-deficient patients, we found that N-Hcy-collagen was elevated in bone, tail, and heart of Cbs-/- mice, whereas pyridinoline cross-links were significantly reduced. Plasma deoxypyridinoline cross-link and cross-linked carboxyterminal telopeptide of type I collagen were also significantly reduced in the Cbs-/- mice. Lysine oxidase activity and mRNA level were not reduced by the Cbs-/- genotype. We also showed that collagen carries S-linked Hcy bound to the thiol of N-linked Hcy. In vitro experiments showed that Hcy-thiolactone modifies lysine residues in collagen type I α-1 chain. Residue K160, located in the nonhelical N-telopeptide region and involved in pyridinoline cross-link formation, was also N-homocysteinylated in vivo Taken together, our findings showed that N-homocysteinylation of collagen in Cbs-/- mice impairs its cross-linking. These findings explain, at least in part, connective tissue abnormalities observed in HHcy.-Perla-Kajan, J., Utyro, O., Rusek, M., Malinowska, A., Sitkiewicz, E., Jakubowski, H. N-Homocysteinylation impairs collagen cross-linking in cystathionine ß-synthase-deficient mice: a novel mechanism of connective tissue abnormalities.


Assuntos
Colágeno Tipo I/metabolismo , Tecido Conjuntivo/metabolismo , Cistationina beta-Sintase/metabolismo , Homocisteína/análogos & derivados , Hiper-Homocisteinemia/metabolismo , Animais , Cadeia alfa 1 do Colágeno Tipo I , Cistationina beta-Sintase/genética , Homocisteína/metabolismo , Homocistinúria/genética , Lisina/metabolismo , Camundongos Knockout , Peptídeos/metabolismo
6.
Arch Biochem Biophys ; 517(1): 12-9, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22086120

RESUMO

Juvenile hormone binding protein (JHBP) acts as a shuttle, carrying one of the most crucial hormones for insect development to target tissues. We have found that although the JHBP molecule does not contain tryptophan residues, it exhibits a weak fluorescence maximum near 420nm upon excitation at 315nm. Gel filtration experiments performed in denaturing conditions and ESI-MS analyses excluded the possibility that some low molecular ligand was bound to the protein molecules. Further UV and CD spectroscopy studies, as well as immunoblotting, showed that the unusual JHBP optical properties were due to dityrosine intramolecular cross-linking. These bridges were detected both in native and recombinant protein molecules. We believe that in Galleria mellonella hemolymph the DT generation occurs via ROS-mediated oxidation leading to the formation of cross-linked JHBP monomers. MS analyses of peptides generated after JHBP proteolysis indicated, that the dityrosine bridge occurs between the Y128 and Y130 residues.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Insetos/metabolismo , Insetos/metabolismo , Tirosina/análogos & derivados , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Dicroísmo Circular , Hemolinfa/química , Hemolinfa/metabolismo , Proteínas de Insetos/química , Insetos/química , Hormônios Juvenis/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Tirosina/química , Tirosina/metabolismo
7.
Brain Sci ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070185

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder. It affects many organs. Lewy bodies-a histopathological "hallmark" of PD-are detected in about 75% of PD submandibular gland samples. We hypothesize that saliva can be a source of biomarkers of PD. The aim of the study was to evaluate and compare the salivary proteome of PD patients and healthy controls (HC). Salivary samples from 39 subjects (24 PD patients, mean age 61.6 ± 8.2; 15 HC, mean age 60.9 ± 6.7) were collected. Saliva was collected using RNA-Pro-Sal kits. Label-free LC-MS/MS mass spectrometry was performed to characterize the proteome of the saliva. IPA analysis of upstream inhibitors was performed. A total of 530 proteins and peptides were identified. We observed lower concentrations of S100-A16, ARP2/3, and VPS4B in PD group when compared to HC. We conclude that the salivary proteome composition of PD patients is different than that of healthy controls. We observed a lower concentration of proteins involved in inflammatory processes, exosome formation, and adipose tissue formation. The variability of expression of proteins between the two groups needs to be considered.

8.
Genes (Basel) ; 12(5)2021 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923051

RESUMO

The slime mold Dictyostelium discoideum's life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria's structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


Assuntos
Dictyostelium/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Metabolismo Energético , Estágios do Ciclo de Vida , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteoma/genética , Proteínas de Protozoários/genética
9.
Sci Rep ; 11(1): 11760, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083607

RESUMO

Motile cilia are ultrastructurally complex cell organelles with the ability to actively move. The highly conserved central apparatus of motile 9 × 2 + 2 cilia is composed of two microtubules and several large microtubule-bound projections, including the C1b/C1f supercomplex. The composition and function of C1b/C1f subunits has only recently started to emerge. We show that in the model ciliate Tetrahymena thermophila, C1b/C1f contains several evolutionarily conserved proteins: Spef2A, Cfap69, Cfap246/LRGUK, Adgb/androglobin, and a ciliate-specific protein Tt170/TTHERM_00205170. Deletion of genes encoding either Spef2A or Cfap69 led to a loss of the entire C1b projection and resulted in an abnormal vortex motion of cilia. Loss of either Cfap246 or Adgb caused only minor alterations in ciliary motility. Comparative analyses of wild-type and C1b-deficient mutant ciliomes revealed that the levels of subunits forming the adjacent C2b projection but not C1d projection are greatly reduced, indicating that C1b stabilizes C2b. Moreover, the levels of several IFT and BBS proteins, HSP70, and enzymes that catalyze the final steps of the glycolytic pathway: enolase ENO1 and pyruvate kinase PYK1, are also reduced in the C1b-less mutants.


Assuntos
Cílios/metabolismo , Microtúbulos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Movimento Celular/genética , Cílios/classificação , Cílios/genética , Cílios/ultraestrutura , Sequência Conservada , Espectrometria de Massas , Microtúbulos/química , Microtúbulos/ultraestrutura , Modelos Biológicos , Filogenia , Domínios e Motivos de Interação entre Proteínas/genética , Deleção de Sequência , Tetrahymena thermophila
10.
Front Mol Neurosci ; 10: 192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670266

RESUMO

The selective and neuronal activity-dependent degradation of synaptic proteins appears to be crucial for long-term synaptic plasticity. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which regulates the synaptic content of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), excitatory synapse strength and dendritic spine morphology. The levels of Arc protein are tightly regulated, and its removal occurs via proteasome-mediated degradation that requires prior ubiquitination. Glycogen synthase kinases α and ß (GSK3α, GSKß; collectively named GSK3α/ß) are serine-threonine kinases with abundant expression in the central nervous system. Both GSK3 isozymes are tonically active under basal conditions, but their activity is regulated by intra- and extracellular factors, intimately involved in neuronal activity. Similar to Arc, GSK3α and GSK3ß contribute to synaptic plasticity and the structural plasticity of dendritic spines. The present study identified Arc as a GSK3α/ß substrate and showed that GSKß promotes Arc degradation under conditions that induce de novo Arc synthesis. We also found that GSK3α/ß inhibition potentiated spine head thinning that was caused by the prolonged stimulation of N-methyl-D-aspartate receptors (NMDAR). Furthermore, overexpression of Arc mutants that were resistant to GSK3ß-mediated phosphorylation or ubiquitination resulted in a stronger reduction of dendritic spine width than wildtype Arc overexpression. Thus, GSK3ß terminates Arc expression and limits its effect on dendritic spine morphology. Taken together, the results identify GSK3α/ß-catalyzed Arc phosphorylation and degradation as a novel mechanism for controlling the duration of Arc expression and function.

11.
Eur J Cell Biol ; 94(12): 576-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26548973

RESUMO

Rsp5 ubiquitin ligase belongs to the Nedd4 family of proteins, which affect a wide variety of processes in the cell. Here we document that Rsp5 shows several phosphorylated variants of different mobility and the migration of the phosphorylated forms of Rsp5 was faster for the tpk1Δ tpk3Δ mutant devoid of two alternative catalytic subunits of protein kinase A (PKA), indicating that PKA possibly phosphorylates Rsp5 in vivo. We demonstrated by immunoprecipitation and Western blot analysis of GFP-HA-Rsp5 protein using the anti-phospho PKA substrate antibody that Rsp5 is phosphorylated in PKA sites. Rsp5 contains the sequence 758-RRFTIE-763 with consensus RRXS/T in the catalytic HECT domain and four other sites with consensus RXXS/T, which might be phosphorylated by PKA. The strain bearing the T761D substitution in Rsp5 which mimics phosphorylation grew more slowly at 28°C and did not grow at 37°C, and showed defects in pre-tRNA processing and protein sorting. The rsp5-T761D strain also demonstrated a reduced ability to form colonies, an increase in the level of reactive oxygen species (ROS) and hypersensitivity to ROS-generating agents. These results indicate that PKA may downregulate many functions of Rsp5, possibly affecting its activity. Rsp5 is found in the cytoplasm, nucleus, multivesicular body and cortical patches. The rsp5-T761D mutation led to a strongly increased cortical localization while rsp5-T761A caused mutant Rsp5 to locate more efficiently in internal spots. Rsp5-T761A protein was phosphorylated less efficiently in PKA sites under specific growth conditions. Our data suggests that Rsp5 may be phosphorylated by PKA at position T761 and that this regulation is important for its localization and function.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Mimetismo Molecular , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Treonina/metabolismo
12.
PLoS One ; 9(6): e100200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945725

RESUMO

Oligomeric forms of Aß peptide are most likely the main synaptotoxic and neurotoxic agent in Alzheimer's disease. Toxicity of various Aß oligomeric forms has been confirmed in vivo and also in vitro. However, in vitro preparations were found to be orders of magnitude less toxic than oligomers obtained from in vivo sources. This difference can be explained by the presence of a covalent cross-link, which would stabilize the oligomer. In the present work, we have characterized the structural properties of Aß dimers and trimers stabilized by di- and tri-tyrosine cross-links. Using ion mobility mass spectrometry we have compared the collisional cross-section of non-cross-linked and cross-linked species. We have found that the presence of cross-links does not generate new unique forms but rather shifts the equilibrium towards more compact oligomer types that can also be detected for non-cross-linked peptide. In consequence, more extended forms, probable precursors of off-pathway oligomeric species, become relatively destabilized in cross-linked oligomers and the pathway of oligomer evolution becomes redirected towards fibrillar structures.


Assuntos
Peptídeos beta-Amiloides/química , Reagentes de Ligações Cruzadas/química , Gases/química , Espectrometria de Massas , Multimerização Proteica , Tirosina/análogos & derivados , Eletroforese em Gel de Poliacrilamida , Íons , Modelos Moleculares , Peso Molecular , Espectrometria de Fluorescência , Tirosina/química
13.
J Mol Biol ; 426(15): 2871-85, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24857861

RESUMO

Oligomers formed by amyloid ß (Aß) peptide are widely believed to be the main neurotoxic agent in Alzheimer's disease. Studies discovered a broad variety of oligomeric forms, which display different levels of toxicity. Some of these forms may further assemble into mature fibrils, while other might be off-pathway from conversion to fibrils and assemble into alternative forms. To better understand a relationship between the structure and toxicity of Aß oligomers, we require systematic characterization and classification of all possible forms, facilitating rational design of the beneficial modifiers of their activity. In previous ion mobility analysis of Aß1-40 oligomers, we have detected the coexistence of two alternative structural forms (compact and extended) in a pool of low-order Aß1-40 oligomers. These forms may represent two pathways of the oligomer evolution, leading either to fibrils or to off-pathway oligomers, which are potential candidates for the neurotoxic species. Here, we have analyzed the impact of incubation time, the presence of selected metal ions and the effect of a series of point mutations on mutual population of alternative forms. We have shown that a salt bridge D23K28 provides stabilization of the compact form whereas G25 is required for the existence of the extended form. We have found that binding of metal ions also stabilizes the compact form. These results improve our understanding of the possible molecular mechanism of the bifurcation of structural evolution of non-monomeric Aß species into an off-fibril pathway, ultimately leading to the formation of potentially neurotoxic species.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfato de Zinco/metabolismo , Peptídeos beta-Amiloides/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Fragmentos de Peptídeos/genética
14.
PLoS One ; 8(10): e76353, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098480

RESUMO

Activation of the receptor for advanced glycation end products (RAGE) leads to a chronic proinflammatory signal, affecting patients with a variety of diseases. Potentially beneficial modification of RAGE activity requires understanding the signal transduction mechanism at the molecular level. The ligand binding domain is structurally uncoupled from the cytoplasmic domain, suggesting receptor oligomerization is a requirement for receptor activation. In this study, we used hydrogen-deuterium exchange and mass spectrometry to map structural differences between the monomeric and oligomeric forms of RAGE. Our results indicated the presence of a region shielded from exchange in the oligomeric form of RAGE and led to the identification of a new oligomerization interface localized at the linker region between domains C1 and C2. Based on this finding, a model of a RAGE dimer and higher oligomeric state was constructed.


Assuntos
Deutério/química , Hidrogênio/química , Espectrometria de Massas , Multimerização Proteica , Receptores Imunológicos/química , Espaço Extracelular , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA