Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Antimicrob Agents Chemother ; : e0161023, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687017

RESUMO

Efficient treatment of anthrax-related meningitis in patients poses a significant therapeutic challenge. Previously, we demonstrated in our anthrax meningitis rabbit model that ciprofloxacin treatment is ineffective with most of the treated animals succumbing to the infection. Herein we tested the efficacy of doxycycline in our rabbit model and found it highly effective. Since all of our findings are based on a rabbit model, we test the efficacy of ciprofloxacin or doxycycline in a specific central nervous system (CNS) model developed in non-human primates (NHPs). Similar to rabbits, ciprofloxacin treatment was ineffective, while doxycycline protected the infected rhesus macaques (n = 2) from the lethal CNS Bacillus anthracis infection. To test whether the low efficacy of Ciprofloxacin is an example of low efficacy of all fluoroquinolones or only this substance, we treated rabbits that were inoculated intracisterna magna (ICM) with levofloxacin or moxifloxacin. We found that in contrast to ciprofloxacin, levofloxacin and moxifloxacin were highly efficacious in treating lethal anthrax-related meningitis in rabbits and NHP (levofloxacin). We demonstrated (in naïve rabbits) that this difference probably results from variances in blood-brain-barrier penetration of the different fluoroquinolones. The combined treatment of doxycycline and any one of the tested fluoroquinolones was highly effective in the rabbit CNS infection model. The combined treatment of doxycycline and levofloxacin was effective in an inhalation rabbit model, as good as the doxycycline mono-therapy. These findings imply that while ciprofloxacin is highly effective as a post-exposure prophylactic drug, using this drug to treat symptomatic patients should be reconsidered.

2.
Arch Toxicol ; 96(3): 859-875, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032184

RESUMO

rVSV-ΔG-SARS-CoV-2-S is a clinical stage (Phase 2) replication competent recombinant vaccine against SARS-CoV-2. To evaluate the safety profile of the vaccine, a series of non-clinical safety, immunogenicity and efficacy studies were conducted in four animal species, using multiple doses (up to 108 Plaque Forming Units/animal) and dosing regimens. There were no treatment-related mortalities or any noticeable clinical signs in any of the studies. Compared to unvaccinated controls, hematology and biochemistry parameters were unremarkable and no adverse histopathological findings. There was no detectable viral shedding in urine, nor viral RNA detected in whole blood or serum samples seven days post vaccination. The rVSV-ΔG-SARS-CoV-2-S vaccination gave rise to neutralizing antibodies, cellular immune responses, and increased lymphocytic cellularity in the spleen germinal centers and regional lymph nodes. No evidence for neurovirulence was found in C57BL/6 immune competent mice or in highly sensitive type I interferon knock-out mice. Vaccine virus replication and distribution in K18-human Angiotensin-converting enzyme 2-transgenic mice showed a gradual clearance from the vaccination site with no vaccine virus recovered from the lungs. The nonclinical data suggest that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe and immunogenic. These results supported the initiation of clinical trials, currently in Phase 2.


Assuntos
Vacinas contra COVID-19/toxicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Cricetinae , Feminino , Glicoproteínas de Membrana/genética , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Suínos , Vacinação , Vacinas Sintéticas/toxicidade , Proteínas do Envelope Viral/genética
3.
Microb Pathog ; 155: 104904, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33930422

RESUMO

The poly- δ- d-glutamic acid capsule of Bacillus anthracis plays a major role in this bacterium pathogenicity. Capsule synthesis relies on a 5 gene operon; capB, C, A, D and E that are regulated by acpA and acpB, that respond to the major virulence regulator - atxA. We took a genetic approach to examine the involvement of acpA and acpB in capsule production in vitro and on B. anthracis virulence in vivo. To complement the effect of the mutations on capsule accumulation in vitro, we applied our toxin independent systemic infection method to study their effects in vivo. We found that though the roles of acpA and axpB are redundant in vitro, deleting acpA had a significant effect on pathogenicity, mainly on the time to death. As expected, deletion of both acpA and acpB resulted in loss of capsule accumulation in vitro and full attenuation in vivo, indicating that capsule production depends exclusively on acpA/B regulation. To identify additional effects of acpA and acpB on pathogenicity via non-capsule related virulence pathways, we bypassed acpA/B regulation by inserting the pagA promotor upstream to the cap operon, diverting regulation directly to atxA. This resulted in restoration of capsule accumulation in vitro and virulence (in intravenous or subcutaneous inoculation) in vivo. To test for additional pXO2-based genes involved in capsule production, we cloned the pagAprom-capA-E into the chromosome of VollumΔpXO2, which restored capsule accumulation. These results indicate that of the pXO2 genes, only capA-E and acpA are required for capsule production.


Assuntos
Bacillus anthracis , Animais , Bacillus anthracis/genética , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Coelhos , Transativadores/genética , Virulência
4.
Anal Bioanal Chem ; 413(13): 3501-3510, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33768365

RESUMO

Public health experts emphasize the need for quick, point-of-care SARS-CoV-2 detection as an effective strategy for controlling virus spread. To this end, many "antigen" detection devices were developed and commercialized. These devices are mostly based on detecting SARS-CoV-2's nucleocapsid protein. Recently, alerts issued by both the FDA and the CDC raised concerns regarding the devices' tendency to exhibit false positive results. In this work, we developed a novel alternative spike-based antigen assay, comprising four high-affinity, specific monoclonal antibodies, directed against different epitopes on the spike's S1 subunit. The assay's performance was evaluated for COVID-19 detection from nasopharyngeal swabs, compared to an in-house nucleocapsid-based assay, composed of novel antibodies directed against the nucleocapsid. Detection of COVID-19 was carried out in a cohort of 284 qRT-PCR positive and negative nasopharyngeal swab samples. The time resolved fluorescence (TRF) ELISA spike assay displayed very high specificity (99%) accompanied with a somewhat lower sensitivity (66% for Ct < 25), compared to the nucleocapsid ELISA assay which was more sensitive (85% for Ct < 25) while less specific (87% specificity). Despite being outperformed by qRT-PCR, we suggest that there is room for such tests in the clinical setting, as cheap and rapid pre-screening tools. Our results further suggest that when applying antigen detection, one must consider its intended application (sensitivity vs specificity), taking into consideration that the nucleocapsid might not be the optimal target. In this regard, we propose that a combination of both antigens might contribute to the validity of the results. Schematic representation of sample collection and analysis. The figure was created using BioRender.com.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/análise , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/análise , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Fosfoproteínas/análise , Sensibilidade e Especificidade , Manejo de Espécimes
5.
Nat Mater ; 17(8): 740-746, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967464

RESUMO

The diffusivity of macromolecules in the cytoplasm of eukaryotic cells varies over orders of magnitude and dictates the kinetics of cellular processes. However, a general description that associates the Brownian or anomalous nature of intracellular diffusion to the architectural and biochemical properties of the cytoplasm has not been achieved. Here we measure the mobility of individual fluorescent nanoparticles in living mammalian cells to obtain a comprehensive analysis of cytoplasmic diffusion. We identify a correlation between tracer size, its biochemical nature and its mobility. Inert particles with size equal or below 50 nm behave as Brownian particles diffusing in a medium of low viscosity with negligible effects of molecular crowding. Increasing the strength of non-specific interactions of the nanoparticles within the cytoplasm gradually reduces their mobility and leads to subdiffusive behaviour. These experimental observations and the transition from Brownian to subdiffusive motion can be captured in a minimal phenomenological model.


Assuntos
Citosol/metabolismo , Nanopartículas/química , Difusão , Células HeLa , Humanos , Tamanho da Partícula , Pontos Quânticos/química , Pontos Quânticos/metabolismo
6.
Nat Mater ; 17(11): 1048, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30232394

RESUMO

In the version of this Article originally published, Supplementary Videos 3-5 were incorrectly labelled; 3 should have been 5, 4 should have been 3 and 5 should have been 4. This has now been corrected.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29661872

RESUMO

Treatment of anthrax is challenging, especially during the advanced stages of the disease. Recently, the Centers for Disease Control and Prevention (CDC) updated its recommendations for postexposure prophylaxis and treatment of exposed populations (before and after symptom onset). These recommendations distinguished, for the first time, between systemic disease with and without meningitis, a common and serious complication of anthrax. The CDC considers all systemic cases meningeal unless positively proven otherwise. The treatment of patients suffering from systemic anthrax with suspected or confirmed meningitis includes the combination of three antibiotics, i.e., a fluoroquinolone (levofloxacin or ciprofloxacin), a ß-lactam (meropenem or imipenem), and a protein synthesis inhibitor (linezolid or clindamycin). In addition, treatment with an antitoxin (anti-protective antigen antibodies) and dexamethasone should be applied. Since the efficacy of most of these treatments has not been demonstrated, especially in animal meningitis models, we developed an anthrax meningitis model in rabbits and tested several of these recommendations. We demonstrated that, in this model, ciprofloxacin, linezolid, and meropenem were ineffective as single treatments, while clindamycin was highly effective. Furthermore, combined treatments of ciprofloxacin and linezolid or ciprofloxacin and dexamethasone failed in treating rabbits with meningitis. We demonstrated that dexamethasone actually hindered blood-brain barrier penetration by antibiotics, reducing the effectiveness of antibiotic treatment of anthrax meningitis in this rabbit model.


Assuntos
Antraz/tratamento farmacológico , Antibacterianos/uso terapêutico , Antitoxinas/uso terapêutico , Bacillus anthracis/efeitos dos fármacos , Meningites Bacterianas/tratamento farmacológico , Animais , Antraz/patologia , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Ciprofloxacina/uso terapêutico , Clindamicina/uso terapêutico , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Combinação de Medicamentos , Imipenem/uso terapêutico , Levofloxacino/uso terapêutico , Linezolida/uso terapêutico , Meningites Bacterianas/microbiologia , Meningites Bacterianas/patologia , Meropeném/uso terapêutico , Coelhos , Falha de Tratamento
8.
Antimicrob Agents Chemother ; 60(8): 4878-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270276

RESUMO

Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets.


Assuntos
Antraz/imunologia , Antígenos de Bactérias/imunologia , Antitoxinas/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Animais , Antraz/microbiologia , Vacinas contra Antraz/imunologia , Anticorpos Antibacterianos/imunologia , Feminino , Soros Imunes/imunologia , Coelhos , Esporos Bacterianos/imunologia , Vacinação/métodos
9.
Antimicrob Agents Chemother ; 59(12): 7497-503, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26392505

RESUMO

Respiratory anthrax is a fatal disease in the absence of early treatment with antibiotics. Rabbits are highly susceptible to infection with Bacillus anthracis spores by intranasal instillation, succumbing within 2 to 4 days postinfection. This study aims to test the efficiency of antibiotic therapy to treat systemic anthrax in this relevant animal model. Delaying the initiation of antibiotic administration to more than 24 h postinfection resulted in animals with systemic anthrax in various degrees of bacteremia and toxemia. As the onset of symptoms in humans was reported to start on days 1 to 7 postexposure, delaying the initiation of treatment by 24 to 48 h (time frame for mass distribution of antibiotics) may result in sick populations. We evaluated the efficacy of antibiotic administration as a function of bacteremia levels at the time of treatment initiation. Here we compare the efficacy of treatment with clarithromycin, amoxicillin-clavulanic acid (Augmentin), imipenem, vancomycin, rifampin, and linezolid to the previously reported efficacy of doxycycline and ciprofloxacin. We demonstrate that treatment with amoxicillin-clavulanic acid, imipenem, vancomycin, and linezolid were as effective as doxycycline and ciprofloxacin, curing rabbits exhibiting bacteremia levels of up to 10(5) CFU/ml. Clarithromycin and rifampin were shown to be effective only as a postexposure prophylactic treatment but failed to treat the systemic (bacteremic) phase of anthrax. Furthermore, we evaluate the contribution of combined treatment of clindamycin and ciprofloxacin, which demonstrated improvement in efficacy compared to ciprofloxacin alone.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antraz/tratamento farmacológico , Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Bacteriemia/tratamento farmacológico , Ciprofloxacina/farmacologia , Doxiciclina/farmacologia , Infecções Respiratórias/tratamento farmacológico , Animais , Antraz/microbiologia , Antraz/mortalidade , Antraz/patologia , Bacillus anthracis/patogenicidade , Bacillus anthracis/fisiologia , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Bacteriemia/patologia , Claritromicina/farmacologia , Modelos Animais de Doenças , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Imipenem/farmacologia , Linezolida/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Coelhos , Infecções Respiratórias/microbiologia , Infecções Respiratórias/mortalidade , Infecções Respiratórias/patologia , Rifampina/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/patogenicidade , Esporos Bacterianos/fisiologia , Análise de Sobrevida , Vancomicina/farmacologia
10.
Nat Methods ; 7(4): 275-85, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20354518

RESUMO

Monitoring the behavior of single molecules in living cells is a powerful approach to investigate the details of cellular processes. Owing to their optical, chemical and biofunctional properties, semiconductor quantum dot (QD) probes promise to be tools of choice in this endeavor. Here we review recent advances that allow ever more controlled experiments at the single-nanoparticle level in live cells. Several examples, related to membrane dynamics, cell signaling or intracellular transport, illustrate how single QD tracking can be readily used to decipher complex biological processes and address key concepts that underlie cellular organization and dynamics.


Assuntos
Técnicas Citológicas/métodos , Pontos Quânticos , Fenômenos Fisiológicos Celulares , Técnicas Citológicas/instrumentação
11.
PLoS One ; 18(2): e0281879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795682

RESUMO

Bacillus anthracis overcomes host immune responses by producing capsule and secreting toxins. Production of these virulence factors in response to entering the host environment was shown to be regulated by atxA, the major virulence regulator, known to be activated by HCO3- and CO2. While toxin production is regulated directly by atxA, capsule production is independently mediated by two regulators; acpA and acpB. In addition, it was demonstrated that acpA has at least two promotors, one of them shared with atxA. We used a genetic approach to study capsule and toxin production under different conditions. Unlike previous works utilizing NBY, CA or R-HCO3- medium under CO2 enriched conditions, we used a sDMEM-based medium. Thus, toxin and capsule production can be induced in ambient or CO2 enriched atmosphere. Using this system, we could differentiate between induction by 10% NRS, 10% CO2 or 0.75% HCO3-. In response to high CO2, capsule production is induced by acpA based response in an atxA-independent manner, with little to no toxin (protective antigen PA) production. atxA based response is activated in response to serum independently of CO2, inducing toxin and capsule production in an acpA or acpB dependent manner. HCO3- was also found to activate atxA based response, but in non-physiological concentrations. Our findings may help explain the first stages of inhalational infection, in which spores germinating in dendritic cells require protection (by encapsulation) without affecting cell migration to the draining lymph-node by toxin secretion.


Assuntos
Bacillus anthracis , Toxinas Bacterianas , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Dióxido de Carbono/farmacologia , Regulação Bacteriana da Expressão Gênica , Antígenos de Bactérias/genética
12.
Infect Immun ; 80(8): 2623-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22585968

RESUMO

The virulence of Bacillus anthracis, the causative agent of anthrax, stems from its antiphagocytic capsule, encoded by pXO2, and the tripartite toxins encoded by pXO1. The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play major roles in pathogenicity. We tested this assumption by a systematic study of mutants with combined deletions of the pag, lef, and cya genes, encoding protective antigen (PA), lethal factor (LF), and edema factor (EF), respectively. The resulting seven mutants (single, double, and triple) were evaluated following subcutaneous (s.c.) and intranasal (i.n.) inoculation in rabbits and guinea pigs. In the rabbit model, virulence is completely dependent on the presence of PA. Any mutant bearing a pag deletion behaved like a pXO1-cured mutant, exhibiting complete loss of virulence with attenuation indices of over 2,500,000 or 1,250 in the s.c. or i.n. route of infection, respectively. In marked contrast, in guinea pigs, deletion of pag or even of all three toxin components resulted in relatively moderate attenuation, whereas the pXO1-cured bacteria showed complete attenuation. The results indicate that a pXO1-encoded factor(s), other than the toxins, has a major contribution to the virulence mechanism of B. anthracis in the guinea pig model. These unexpected toxin-dependent and toxin-independent manifestations of pathogenicity in different animal models emphasize the importance and need for a comprehensive evaluation of B. anthracis virulence in general and in particular for the design of relevant next-generation anthrax vaccines.


Assuntos
Antraz/microbiologia , Antígenos de Bactérias/toxicidade , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/toxicidade , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Bacillus anthracis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Genótipo , Cobaias , Reação em Cadeia da Polimerase , Coelhos , Virulência
13.
Microb Pathog ; 52(1): 55-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22020310

RESUMO

Bacillus anthracis secretes three major components, which assemble into two bipartite toxins: lethal toxin (LT), composed of lethal factor (LF) and protective antigen (PA) and edema toxin (ET), composed of edema factor (EF) and PA. EF is a potent calmodulin-dependent adenylate cyclase, which is internalized into the target cell following PA binding. Once inside the cell, EF elevates cAMP levels, interrupting intracellular signaling. Effects of ET were demonstrated on monocytes, neutrophils and T-cells. In an earlier work we demonstrated that a deletion of LF in a fully virulent strain had no effect in guinea pigs and a significant, but not major, effect in the rabbit model. These results suggested that EF might play an important role in the development of infection and mortality following exposure to B. anthracis spores. To evaluate the role of EF in B. anthracis pathogenicity we deleted the cya gene, which encodes the EF protein, in the fully virulent Vollum strain. The Δcya mutant was fully virulent in the guinea pig model as determined by LD(50) experiments. In the rabbit model, when infected subcutaneously, the absence of EF had no effect on the virulence of the mutant. However an increase of two orders of magnitude in the LD(50) was demonstrated when the rabbits were infected by intranasal instillation accompanied with partial mortality and increased mean time to death. These results argue that in the guinea pig model the presence of one of the toxins, ET or LT is sufficient for the development of the infection. In the rabbit model ET plays a role in respiratory infection, most probably mediating the early steps of host colonization.


Assuntos
Antraz/microbiologia , Antígenos de Bactérias/genética , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/genética , Deleção de Genes , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Antraz/mortalidade , Antígenos de Bactérias/metabolismo , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Coelhos , Virulência
14.
Pathogens ; 10(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801490

RESUMO

Mouse monoclonal antibodies were raised against plague disease biomarkers: the bacterial capsular protein fraction 1 (F1) and the low-calcium response-LcrV virulence factor (Vag). A novel tandem assay, employing BioLayer Interferometry (BLI), enabled the isolation of antibodies against four different epitopes on Vag. The tandem assay was carried out with hybridoma supernatants, circumventing the need for antibody purification. The BioLayer assay was further adopted for characterization of epitope-repetitive antigens, enabling the discovery of two unique epitopes on F1. The selected antibodies were purified and applied as "oligo-clonal" reagents for the immuno-detection of both biomarkers. The developed Homogenous Time Resolved Fluorescence (HTRF) tests were short (10 min) and simple (no washing steps), allowing for detection of 10 ng/mL F1 and 2.5 ng/mL Vag. The tests were successfully applied for detection of disease biomarkers produced by various Y. pestis strains during growth in blood culture vials.

15.
Viruses ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062215

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a severe global pandemic. Mice models are essential to investigate infection pathology, antiviral drugs, and vaccine development. However, wild-type mice lack the human angiotensin-converting enzyme 2 (hACE2) that mediates SARS-CoV-2 entry into human cells and consequently are not susceptible to SARS-CoV-2 infection. hACE2 transgenic mice could provide an efficient COVID-19 model, but are not always readily available, and practically restricted to specific strains. Therefore, there is a dearth of additional mouse models for SARS-CoV-2 infection. We applied lentiviral vectors to generate hACE2 expression in interferon receptor knock-out (IFNAR1-/-) mice. Lenti-hACE2 transduction supported SARS-CoV-2 replication in vivo, simulating mild acute lung disease. Gene expression analysis revealed two modes of immune responses to SARS-CoV-2 infection: one in response to the exposure of mouse lungs to SARS-CoV-2 particles in the absence of productive viral replication, and the second in response to productive SARS-CoV-2 infection. Our results infer that immune response to immunogenic elements on incoming virus or in productively infected cells stimulate diverse immune effectors, even in absence of type I IFN signaling. Our findings should contribute to a better understanding of the immune response triggered by SARS-CoV-2 and to further elucidate COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/imunologia , Modelos Animais de Doenças , Lentivirus/genética , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/virologia , Linhagem Celular , Humanos , Imunidade/genética , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética , Transdução Genética , Replicação Viral
16.
Microbiol Spectr ; 9(2): e0087021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612689

RESUMO

The first case of SARS-CoV-2 was discovered in Israel in late February 2020. Three major outbreaks followed, resulting in over 800,000 cases and over 6,000 deaths by April 2021. Our aim was characterization of a serological snapshot of Israeli patients and healthy adults in the early months of the COVID-19 pandemic. Sera from 55 symptomatic COVID-19 patients and 146 healthy subjects (early-pandemic, reverse transcription-quantitative PCR [qRT-PCR]-negative), collected in Israel between March and April 2020, were screened for SARS-CoV-2-specific IgG, IgM, and IgA antibodies, using a 6-plex antigen microarray presenting the whole inactivated virus and five viral antigens: a stabilized version of the spike ectodomain (S2P), spike subunit 1 (S1), receptor-binding-domain (RBD), N-terminal-domain (NTD), and nucleocapsid (NC). COVID-19 patients, 4 to 40 days post symptom onset, presented specific IgG to all of the viral antigens (6/6) in 54 of the 55 samples (98% sensitivity). Specific IgM and IgA antibodies for all six antigens were detected in only 10% (5/55) and 4% (2/55) of the patients, respectively, suggesting that specific IgG is a superior serological marker for COVID-19. None of the qRT-PCR-negative sera reacted with all six viral antigens (100% specificity), and 48% (70/146) were negative throughout the panel. Our findings confirm a low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population prior to the COVID-19 outbreak. We further suggest that the presence of low-level cross-reacting antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals. IMPORTANCE A 6-plex protein array presenting the whole inactivated virus and five nucleocapsid and spike-derived SARS-CoV-2 antigens was used to generate a serological snapshot of SARS-CoV-2 seroprevalence and seroconversion in Israel in the early months of the pandemic. Our findings confirm a very low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population. We further propose that the presence of low-level nonspecific antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals enabling accurate determination of seroconversion. The developed assay is currently applied to evaluate immune responses to the Israeli vaccine during human phase I/II trials.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/epidemiologia , Análise em Microsséries/métodos , SARS-CoV-2/imunologia , Adulto , Idoso , Antígenos Virais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Imunoensaio/métodos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Israel/epidemiologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
17.
PLoS One ; 15(2): e0228917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053632

RESUMO

As Bacillus anthracis spores pose a proven bio-terror risk, the treatment focus has shifted from exposed populations to anthrax patients and the need for effective antibiotic treatment protocols increases. The CDC recommends carbapenems and Linezolid (oxazolidinone), for the treatment of anthrax, particularly for the late, meningeal stages of the disease. Previously we demonstrated that treatment with Meropenem or Linezolid, either as a single treatment or in combination with Ciprofloxacin, fails to protect rabbits from anthrax-meningitis. In addition, we showed that the failure of Meropenem was due to slow BBB penetration rather than low antibacterial activity. Herein, we tested the effect of increasing the dose of the antibiotic on treatment efficacy. We found that for full protection (88% cure rate) the dose should be increased four-fold from 40 mg/kg to 150 mg/kg. In addition, B. anthracis is a genetically stable bacterium and naturally occurring multidrug resistant B. anthracis strains have not been reported. In this manuscript, we report the efficacy of classical ß-lactams as a single treatment or in combination with ß-lactamase inhibitors in treating anthrax meningitis. We demonstrate that Ampicillin based treatment of anthrax meningitis is largely efficient (66%). The high efficacy (88-100%) of Augmentin (Amoxicillin and Clavulonic acid) and Unasyn (Ampicillin and Sulbactam) makes them a favorable choice due to reports of ß-lactam resistant B. anthracis strains. Tazocin (Piperacillin and Tazobactam) proved inefficient compared to the highly efficient Augmentin and Unasyn.


Assuntos
Antraz/tratamento farmacológico , Bacillus anthracis/efeitos dos fármacos , beta-Lactamas/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Ampicilina/uso terapêutico , Animais , Antibacterianos/farmacologia , Bacillus anthracis/metabolismo , Bacillus anthracis/patogenicidade , Bactérias/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Combinação Piperacilina e Tazobactam/uso terapêutico , Coelhos , Sulbactam/uso terapêutico , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamas/metabolismo
18.
Clin Microbiol Infect ; 26(12): 1658-1662, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919072

RESUMO

OBJECTIVES: Environmental surfaces have been suggested as likely contributors in the transmission of COVID-19. This study assessed the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contaminating surfaces and objects in two hospital isolation units and a quarantine hotel. METHODS: SARS-CoV-2 virus stability and infectivity on non-porous surfaces was tested under controlled laboratory conditions. Surface and air sampling were conducted at two COVID-19 isolation units and in a quarantine hotel. Viral RNA was detected by RT-PCR and infectivity was assessed by VERO E6 CPE test. RESULTS: In laboratory-controlled conditions, SARS-CoV-2 gradually lost its infectivity completely by day 4 at ambient temperature, and the decay rate of viral viability on surfaces directly correlated with increase in temperature. Viral RNA was detected in 29/55 surface samples (52.7%) and 16/42 surface samples (38%) from the surroundings of symptomatic COVID-19 patients in isolation units of two hospitals and in a quarantine hotel for asymptomatic and very mild COVID-19 patients. None of the surface and air samples from the three sites (0/97) were found to contain infectious titres of SARS-Cov-2 on tissue culture assay. CONCLUSIONS: Despite prolonged viability of SARS-CoV-2 under laboratory-controlled conditions, uncultivable viral contamination of inanimate surfaces might suggest low feasibility for indirect fomite transmission.


Assuntos
COVID-19/transmissão , Fômites/virologia , Hospitais de Isolamento/estatística & dados numéricos , Habitação/estatística & dados numéricos , Viabilidade Microbiana , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Humanos , RNA Viral/isolamento & purificação , Propriedades de Superfície , Temperatura
19.
Nat Commun ; 11(1): 6402, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328475

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Peso Corporal , COVID-19/virologia , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Genoma Viral , Pulmão/patologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Mutação/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Vacinação , Carga Viral
20.
J Biol Methods ; 5(4): e100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31453250

RESUMO

For about four decades, hybridoma technologies have been the "work horse" of monoclonal antibody production. These techniques proved to be robust and reliable, albeit laborious. Over the years, several major improvements have been introduced into the field, but yet, antibody production still requires many hours of labor and considerable resources. In this work, we present a leap forward in the advancement of hybridoma-based monoclonal antibody production, which saves labor and time and increases yield, by combining hybridoma technology, fluorescent particles and fluorescence-activated cell sorting (FACS). By taking advantage of the hybridomas' cell-surface associated antibodies, we can differentiate between antigen-specific and non-specific cells, based on their ability to bind the particles. The speed and efficiency of antibody discovery, and subsequent cell cloning, are of high importance in the field of infectious diseases. Therefore, as a model system, we chose the protein LcrV, a major virulence factor of the plague pathogen Yersinia pestis, an important re-emerging pathogen and a possible bioterror agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA