Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 299(6): 104786, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37146968

RESUMO

The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.


Assuntos
Proteínas de Ciclo Celular , Ubiquitina-Proteína Ligases , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Expressão Gênica , Células HEK293 , Mutação , Domínios Proteicos , Transporte Proteico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Front Immunol ; 13: 860421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874737

RESUMO

Background: Standard combination ipilimumab/nivolumab (I/N) is given as 4 induction doses for advanced stage melanoma followed by nivolumab single-agent maintenance therapy. While many patients receive less than 4 doses due to immune-related toxicities, it is unclear if fewer doses of I/N may still provide long term clinical benefit. Our aim is to determine if response assessment after 1 or 2 doses of I/N can predict long-term survival and assess if fewer doses of I/N can lead to similar survival outcomes. Methods: We performed a retrospective analysis on a cohort of patients with advanced melanoma who w0ere treated with standard I/N. Cox regression of progression-free survival (PFS) and overall survival (OS) models were performed to assess the relationship between response after 1 or 2 doses of I/N and risk of progression and/or death. Clinical benefit response (CBR) was assessed, defined as SD (stable disease) + PR (partial response) + CR (complete response) by imaging. Among patients who achieved a CBR after 1 or 2 doses of I/N, a multivariable Cox regression of survival was used to compare 1 or 2 vs 3 or 4 doses of I/N adjusted by known prognostic variables in advanced melanoma. Results: 199 patients were evaluated. Patients with CBR after 1 dose of I/N had improved PFS (HR: 0.16, 95% CI 0.08-0.33; p<0.001) and OS (HR: 0.12, 0.05-0.32; p<0.001) compared to progressive disease (PD). Patients with CBR (vs PD) after 2 doses of I/N also had improved PFS (HR: 0.09, 0.05-0.16; p<0.001) and OS (HR: 0.07, 0.03-0.14; p<0.001). There was no survival risk difference comparing 1 or 2 vs 3 or 4 doses of I/N for PFS (HR: 0.95, 0.37-2.48; p=0.921) and OS (HR: 1.04, 0.22-4.78; p=0.965). Conclusions: Early interval imaging with response during induction with I/N may be predictive of long-term survival in advanced stage melanoma. CBR after 1 or 2 doses of I/N is associated with favorable survival outcomes, even in the setting of fewer I/N doses received. Further studies are warranted to evaluate if electively administering fewer combination I/N doses despite tolerance in select patients may balance the benefits of therapy while decreasing toxicities.


Assuntos
Antineoplásicos Imunológicos , Inibidores de Checkpoint Imunológico , Ipilimumab , Melanoma , Nivolumabe , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Ipilimumab/efeitos adversos , Melanoma/tratamento farmacológico , Nivolumabe/efeitos adversos , Estudos Retrospectivos
3.
Nat Med ; 27(1): 152-164, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33398162

RESUMO

Metastasis is the primary cause of cancer mortality, and cancer frequently metastasizes to the liver. It is not clear whether liver immune tolerance mechanisms contribute to cancer outcomes. We report that liver metastases diminish immunotherapy efficacy systemically in patients and preclinical models. Patients with liver metastases derive limited benefit from immunotherapy independent of other established biomarkers of response. In multiple mouse models, we show that liver metastases siphon activated CD8+ T cells from systemic circulation. Within the liver, activated antigen-specific Fas+CD8+ T cells undergo apoptosis following their interaction with FasL+CD11b+F4/80+ monocyte-derived macrophages. Consequently, liver metastases create a systemic immune desert in preclinical models. Similarly, patients with liver metastases have reduced peripheral T cell numbers and diminished tumoral T cell diversity and function. In preclinical models, liver-directed radiotherapy eliminates immunosuppressive hepatic macrophages, increases hepatic T cell survival and reduces hepatic siphoning of T cells. Thus, liver metastases co-opt host peripheral tolerance mechanisms to cause acquired immunotherapy resistance through CD8+ T cell deletion, and the combination of liver-directed radiotherapy and immunotherapy could promote systemic antitumor immunity.


Assuntos
Imunoterapia , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Hepáticas Experimentais/terapia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Macrófagos/imunologia , Linfócitos T/imunologia , Animais , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Estudos de Coortes , Terapia Combinada , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas Experimentais/imunologia , Ativação Linfocitária , Masculino , Melanoma/imunologia , Melanoma/secundário , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Radioterapia Adjuvante , Linfócitos T/classificação , Linfócitos T/patologia , Falha de Tratamento , Resultado do Tratamento , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
4.
Clin Cancer Res ; 26(19): 5246-5257, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718999

RESUMO

PURPOSE: Treatment approaches using Hsp90 inhibitors at their maximum tolerated doses (MTDs) have not produced selective tumor toxicity. Inhibition of Hsp90 activity causes degradation of client proteins including those involved in recognizing and repairing DNA lesions. We hypothesized that if DNA repair proteins were degraded by concentrations of an Hsp90 inhibitor below those required to cause nonspecific cytotoxicity, significant tumor-selective radiosensitization might be achieved. EXPERIMENTAL DESIGN: Tandem mass tagged-mass spectrometry was performed to determine the effect of a subcytotoxic concentration of the Hsp90 inhibitor, AT13387 (onalespib), on global protein abundance. The effect of AT13387 on in vitro radiosensitization was assessed using a clonogenic assay. Pharmacokinetics profiling was performed in mice bearing xenografts. Finally, the effect of low-dose AT13387 on the radiosensitization of three tumor models was assessed. RESULTS: A subcytotoxic concentration of AT13387 reduced levels of DNA repair proteins, without affecting the majority of Hsp90 clients. The pharmacokinetics study using one-third of the MTD showed 40-fold higher levels of AT13387 in tumors compared with plasma. This low dose enhanced Hsp70 expression in peripheral blood mononuclear cells (PBMCs), which is a biomarker of Hsp90 inhibition. Low dose monotherapy was ineffective, but when combined with radiotherapy, produced significant tumor growth inhibition. CONCLUSIONS: This study shows that a significant therapeutic ratio can be achieved by a low dose of Hsp90 inhibitor in combination with radiotherapy. Hsp90 inhibition, even at a low dose, can be monitored by measuring Hsp70 expression in PBMCs in human studies.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/administração & dosagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Animais , Benzamidas/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/genética , Xenoenxertos , Humanos , Isoindóis/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , Tolerância a Radiação/genética , Radiossensibilizantes/efeitos adversos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
5.
Transl Oncol ; 13(11): 100834, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32688248

RESUMO

The Unfolded Protein Response (UPR) plays a key role in the adaptive response to loss of protein homeostasis within the endoplasmic reticulum (ER). The UPR has an adaptive function in protein homeostasis, however, sustained activation of the UPR due to hypoxia, nutrient deprivation, and increased demand for protein synthesis, alters the UPR program such that additional perturbation of ER homeostasis activates a pro-apoptotic program. Since ubiquitination followed by proteasomal degradation of misfolded proteins within the ER is a central mechanism for restoration of ER homeostasis, inhibitors of this pathway have proven to be valuable anti-cancer therapeutics. Ubiquitin activating enzyme 1(UAE1), activates ubiquitin for transfer to target proteins for proteasomal degradation in conjunction with E2 and E3 enzymes. Inhibition of UAE1 activity in response to TAK-243, leads to an accumulation of misfolded proteins within the ER, thereby aggravating ER stress, leading to DNA damage and arrest of cells in the G2/M phase of the cell cycle. Persistent drug treatment mediates a robust induction of apoptosis following a transient cell cycle arrest. These biological effects of TAK-243 were recapitulated in mouse models of PDAC demonstrating antitumor activity at a dose and schedule that did not exhibit obvious normal tissue toxicity. In vitro as well as studies in mouse models failed to show enhanced efficacy when TAK-243 was combined with ionizing radiation or gemcitabine, providing an impetus for future studies to identify agents that synergize with this class of agents for improved tumor control in PDAC. SIGNIFICANCE: The UAE1 inhibitor TAK-243, mediates activation of the unfolded protein response, accumulation of DNA breaks and apoptosis, providing a rationale for the use as a safe and efficacious anti-cancer therapeutic for PDAC.

6.
Oncotarget ; 7(42): 68597-68613, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27612423

RESUMO

Non-small cell lung cancer (NSCLC) patients carrying specific EGFR kinase activating mutations (L858R, delE746-A750) respond well to tyrosine kinase inhibitors (TKIs). However, drug resistance develops within a year. In about 50% of such patients, acquired drug resistance is attributed to the enrichment of a constitutively active point mutation within the EGFR kinase domain (T790M). To date, differential drug-binding and altered ATP affinities by EGFR mutants have been shown to be responsible for differential TKI response. As it has been reported that EGFR stability plays a role in the survival of EGFR driven cancers, we hypothesized that differential TKI-induced receptor degradation between the sensitive L858R and delE746-A750 and the resistant T790M may also play a role in drug responsiveness. To explore this, we have utilized an EGFR-null CHO overexpression system as well as NSCLC cell lines expressing various EGFR mutants and determined the effects of erlotinib treatment. We found that erlotinib inhibits EGFR phosphorylation in both TKI sensitive and resistant cells, but the protein half-lives of L858R and delE746-A750 were significantly shorter than L858R/T790M. Third generation EGFR kinase inhibitor (AZD9291) inhibits the growth of L858R/T790M-EGFR driven cells and also induces EGFR degradation. Erlotinib treatment induced polyubiquitination and proteasomal degradation, primarily in a c-CBL-independent manner, in TKI sensitive L858R and delE746-A750 mutants when compared to the L858R/T790M mutant, which correlated with drug sensitivity. These data suggest an additional mechanism of TKI resistance, and we postulate that agents that degrade L858R/T790M-EGFR protein may overcome TKI resistance.


Assuntos
Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Animais , Células CHO , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação/efeitos dos fármacos , Poliubiquitina/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA