RESUMO
Plants are continuously exposed to human air pollution, absorbing pollutants in their tissues. Trees can store pollutants in wood, in the annual growth rings, retaining traces of pollutants in the environment. Information on past pollution events are archived by trees, which dendrochemistry, a dendrochronological science combined with chemistry, is able to access. Many authors have suggested that trees could complement the conventional environmental monitoring: a forest archive of pollution events. However, the implications of trees occurrence in polluted areas on planning and management have not yet been discussed. In this article, we investigate whether forest archives exist and whether they should be integrated into the network of existing monitoring stations. We use a case study, the Veneto region of Italy, one of the most polluted areas in Europe, to examine the occurrence of trees around 28 industrial plants retrieved from a European pollution register. We propose planning actions to develop the latent potential of these forest archives for environmental monitoring, which society may benefit. We follow three steps: (a) assessing the cover and composition of tree canopies around the industrial plants, (b) inventorying the existing artificial air monitoring stations in order to discover whether pollutants around the industrial plants are already monitored, (c) assessing land use patterns in order to identify which are the receptors of air pollution and enhance the forest archive in the future. These spatial analyses are conducted in a 1-km radius buffer with the industrial plant as the centre. Results show that forest archives are available, with cover and composition suitable for dendrochemistry studies. Artificial monitoring stations are too far from industrial plants or have been installed recently, unable to provide historical data. Trees are an alternative source of pollution data. Receptors of air pollution include a diversity of urban, rural and agricultural lands, where forest archives can be managed and conserved through a variety of actions. Environmental protection agencies should value these trees, preserving them and accessing the records held in this forest archive. Similar inventories must be promoted in other industrialised regions of the world even at larger scales. Studies like this one should also be incorporated into landscape or urban planning processes.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Europa (Continente) , Florestas , Humanos , Itália , ÁrvoresRESUMO
Policies to mitigate climate change and biodiversity loss often assume that protecting carbon-rich forests provides co-benefits in terms of biodiversity, due to the spatial congruence of carbon stocks and biodiversity at biogeographic scales. However, it remains unclear whether this holds at the scales relevant for management, and particularly large knowledge gaps exist for temperate forests and for taxa other than trees. We built a comprehensive dataset of Central European temperate forest structure and multi-taxonomic diversity (beetles, birds, bryophytes, fungi, lichens, and plants) across 352 plots. We used Boosted Regression Trees (BRTs) to assess the relationship between above-ground live carbon stocks and (a) taxon-specific richness, (b) a unified multidiversity index. We used Threshold Indicator Taxa ANalysis to explore individual species' responses to changing above-ground carbon stocks and to detect change-points in species composition along the carbon-stock gradient. Our results reveal an overall weak and highly variable relationship between richness and carbon stock at the stand scale, both for individual taxonomic groups and for multidiversity. Similarly, the proportion of win-win and trade-off species (i.e., species favored or disadvantaged by increasing carbon stock, respectively) varied substantially across taxa. Win-win species gradually replaced trade-off species with increasing carbon, without clear thresholds along the above-ground carbon gradient, suggesting that community-level surrogates (e.g., richness) might fail to detect critical changes in biodiversity. Collectively, our analyses highlight that leveraging co-benefits between carbon and biodiversity in temperate forest may require stand-scale management that prioritizes either biodiversity or carbon in order to maximize co-benefits at broader scales. Importantly, this contrasts with tropical forests, where climate and biodiversity objectives can be integrated at the stand scale, thus highlighting the need for context-specificity when managing for multiple objectives. Accounting for critical change-points of target taxa can help to deal with this specificity, by defining a safe operating space to manipulate carbon while avoiding biodiversity losses.
Assuntos
Biodiversidade , Carbono/análise , Mudança Climática , Florestas , França , Hungria , ItáliaRESUMO
The effectiveness of conservation interventions for maximizing biodiversity benefits from agri-environment schemes (AESs) is expected to depend on the quantity of seminatural habitats in the surrounding landscape. To verify this hypothesis, we developed a hierarchical sampling design to assess the effects of field boundary type and cover of seminatural habitats in the landscape at two nested spatial scales. We sampled three types of field boundaries with increasing structural complexity (grass margin, simple hedgerow, complex hedgerow) in paired landscapes with the presence or absence of seminatural habitats (radius 0.5 km), that in turn, were nested within 15 areas with different proportions of seminatural habitats at a larger spatial scale (10 X 10 km). Overall, 90 field boundaries were sampled across a Mediterranean'region (northeastern Italy). We considered species richness response across three different taxonomic groups: vascular plants, butterflies, and tachinid flies. No interactions between type of field boundary and surrounding landscape were found at either 0.5 and 10 km, indicating that the quality of field boundary had the same effect irrespective of the cover of seminatural habitats. At the local scale, extended-width grass margins yielded higher plant species richness, while hedgerows yielded higher species richness of butterflies and tachinids. At the 0.5-km landscape scale, the effect of the proportion of seminatural habitats was neutral for plants and tachinids, while butterflies were positively related to the proportion of forest. At the 10-km landscape scale, only butterflies responded positively to the proportion of seminatural habitats. Our study confirmed the importance of testing multiple scales when considering species from different taxa and with different mobility. We showed that the quality of field boundaries at the local scale was an important factor in enhancing farmland biodiversity. For butterflies, AESs should focus particular attention on preservation'of forest patches in agricultural landscapes within 0.5 kin, as well as the conservation of seminatural habitats at a wider landscape scale.
Assuntos
Agricultura , Biodiversidade , Borboletas/classificação , Dípteros/classificação , Modelos Biológicos , Plantas/classificação , Animais , Monitoramento Ambiental , Florestas , ItáliaRESUMO
Thirty-two trace elements were examined in the tree rings of downy oak to evaluate the pollution levels close to a cement plant isolated in a rural context and an industrial area where multiple sources of air pollution are or were present. Tree cores were collected from trees growing 1 km from both the cement plant and the industrial area that are located 8 km from each other. The analysis of the trace elements was performed on annual tree rings from 1990 to 2016 using laser ablation inductively coupled plasma mass spectrometry. Trace elements Cs, Mg, Mn, S and Zn reflected the emission history of the cement plant. Their values have increased since early 2000s, when the cement plant started its activity. However, the lack of significant trends of pollutants in the tree rings from the industrial area and the possible effect of translocation and volatility of some elements left open questions. The very weak changes of the other trace elements in the period 1990-2016 suggest those elements do not mark any additional effect of the industrial activity on the background pollution. The results confirm that downy oak trees growing close to isolated industrial plants must be considered a pollution forest archive accessible through dendrochemistry.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Oligoelementos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Indústrias , Oligoelementos/análiseRESUMO
Knowledge of the species composition of invaded vegetation helps to evaluate an ecological impact of aliens and design an optimal management strategy. We link a new vegetation analysis of a large dataset to the invasion history, ecology and management of Robinia pseudoacacia stands across Southern Europe and provide a map illustrating Robinia distribution. Finally, we compare detected relationships with Central Europe. We show that regional differences in Robinia invasion, distribution, habitats and management are driven both by local natural conditions (climate and soil properties, low competitive ability with native trees) and socioeconomic factors (traditional land-use). Based on the classification of 467 phytosociological relevés we distinguished five broad vegetation types reflecting an oceanity-continentality gradient. The stands were heterogeneous and included 824 taxa, with only 5.8% occurring in more than 10% of samples, representing mainly hemerobic generalists of mesophilous, nutrient-rich and semi-shady habitats. The most common were dry ruderal stands invading human-made habitats. Among native communities, disturbed mesic and alluvial forests were often invaded throughout the area, while dry forests and scrub dominated in Balkan countries. Continuous, long-term and large-scale cultivation represent a crucial factor driving Robinia invasions in natural habitats. Its invasion should be mitigated by suitable management taking into account adjacent habitats and changing cultivation practices to select for native species. Robinia invasion has a comparable pattern in Central and Southern Europe, but there is a substantial difference in management and utilization causing heterogeneity of many South-European stands.
Assuntos
Robinia , Europa (Continente) , Florestas , ÁrvoresRESUMO
Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species' patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.
RESUMO
Trees are natural repositories of valuable environmental information that is preserved in the growth and structure of their stems, branches and roots. Dendrochronological analyses, based on the counting, crossdating and characterisation of incrementally formed wood rings, offer powerful insights for diverse fields including ecology, climatology and archaeology. The application of this toolset is likely to increase in popularity over coming decades due to advances in the field and a reduction in the cost of analyses. In research settings where the continued value of living trees subject to dendrochronological investigation is important, the use of an increment bore corer to extract trunk tissue is considered the best option to minimise negative impacts on tree health (e.g. stress and fitness). A small and fragmented body of literature, however, reports significant after-effects, and in some cases fatal outcomes, from this sampling technique. As it stands, the literature documenting increment bore coring (IBC) impacts lacks experimental consistency and is poorly replicated, making it difficult for prospective users of the method to assess likely tree responses to coring. This paucity of information has the potential to lead to destructive misuse of the method and also limits its safe implementation in circumstances where the risk of impacts may be appropriate. If IBC is to fulfil its potential as a method of choice across research fields, then we must first address our limited understanding of IBC impacts and provide a framework for its appropriate future use. Firstly, we review the historical context of studies examining the impacts of IBC on trees to identify known patterns, focal issues and biases in existing knowledge. IBC wound responses, particularly those that impact on lumber quality, have been the primary focus of prior studies. No universal treatment was identified that conclusively improved wound healing and few studies have linked wound responses to tree health impacts. Secondly, we build on literature insights using a theoretical approach to identify the most important factors to guide future research involving implementation of IBC, including innate tree characteristics and environmental factors. Thirdly, we synthesise and interrogate the quantitative data available through meta-analysis to identify risk factors for wound reactions. Although poor reporting standards, restricted scopes and a bias towards temperate ecosystems limited quantitative insight, we found that complete cambial wound closure could still harbour high rates of internal trunk decay, and that conditions favouring faster growth generally correlated with reduced indices of internal and external damage in broadleaved taxa. Finally, we propose a framework for guiding best-practice application of IBC to address knowledge gaps and maximise the utility of this method, including standardised reporting indices for identifying and minimising negative impacts on tree health. While IBC is an underutilised tool of ecological enquiry with broad applicability, the method will always incur some risk of negative impacts on the cored tree. We caution that the decision to core, or not to core, must be given careful consideration on a case-by-case basis. In time, we are confident that this choice will be better informed by evidence-based insight.