Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135881

RESUMO

Observational studies reveal substantial variability in microbiome composition across individuals. Targeted studies in gnotobiotic animals underscore this variability by showing that some bacterial strains colonize deterministically, while others colonize stochastically. While some of this variability can be explained by external factors like environmental, dietary, and genetic differences between individuals, in this paper we show that for the model organism Drosophila melanogaster, interactions between bacteria can affect the microbiome assembly process, contributing to a baseline level of microbiome variability even among isogenic organisms that are identically reared, housed, and fed. In germ-free flies fed known combinations of bacterial species, we find that some species colonize more frequently than others even when fed at the same high concentration. We develop an ecological technique that infers the presence of interactions between bacterial species based on their colonization odds in different contexts, requiring only presence/absence data from two-species experiments. We use a progressive sequence of probabilistic models, in which the colonization of each bacterial species is treated as an independent stochastic process, to reproduce the empirical distributions of colonization outcomes across experiments. We find that incorporating context-dependent interactions substantially improves the performance of the models. Stochastic, context-dependent microbiome assembly underlies clinical therapies like fecal microbiota transplantation and probiotic administration and should inform the design of synthetic fecal transplants and dosing regimes.


Assuntos
Bactérias/classificação , Drosophila melanogaster/microbiologia , Microbiota , Animais , Fenômenos Fisiológicos Bacterianos/genética , Modelos Biológicos , Especificidade da Espécie , Processos Estocásticos
2.
Annu Rev Phys Chem ; 74: 1-27, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36719975

RESUMO

Phillip L. Geissler made important contributions to the statistical mechanics of biological polymers, heterogeneous materials, and chemical dynamics in aqueous environments. He devised analytical and computational methods that revealed the underlying organization of complex systems at the frontiers of biology, chemistry, and materials science. In this retrospective we celebrate his work at these frontiers.


Assuntos
Física , Masculino , Humanos , Estudos Retrospectivos , Físico-Química
3.
Proc Natl Acad Sci U S A ; 118(20)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972432

RESUMO

Information-driven engines that rectify thermal fluctuations are a modern realization of the Maxwell-demon thought experiment. We introduce a simple design based on a heavy colloidal particle, held by an optical trap and immersed in water. Using a carefully designed feedback loop, our experimental realization of an "information ratchet" takes advantage of favorable "up" fluctuations to lift a weight against gravity, storing potential energy without doing external work. By optimizing the ratchet design for performance via a simple theory, we find that the rate of work storage and velocity of directed motion are limited only by the physical parameters of the engine: the size of the particle, stiffness of the ratchet spring, friction produced by the motion, and temperature of the surrounding medium. Notably, because performance saturates with increasing frequency of observations, the measurement process is not a limiting factor. The extracted power and velocity are at least an order of magnitude higher than in previously reported engines.

4.
Phys Rev Lett ; 130(17): 178401, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172234

RESUMO

Molecular machines composed of coupled subsystems transduce free energy between different external reservoirs, in the process internally transducing energy and information. While subsystem efficiencies of these molecular machines have been measured in isolation, less is known about how they behave in their natural setting when coupled together and acting in concert. Here, we derive upper and lower bounds on the subsystem efficiencies of a bipartite molecular machine. We demonstrate their utility by estimating the efficiencies of the F_{o} and F_{1} subunits of ATP synthase and that of kinesin pulling a diffusive cargo.

5.
Phys Rev Lett ; 131(5): 057101, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595211

RESUMO

Information engines can convert thermal fluctuations of a bath at temperature T into work at rates of order k_{B}T per relaxation time of the system. We show experimentally that such engines, when in contact with a bath that is out of equilibrium, can extract much more work. We place a heavy, micron-scale bead in a harmonic potential that ratchets up to capture favorable fluctuations. Adding a fluctuating electric field increases work extraction up to ten times, limited only by the strength of the applied field. Our results connect Maxwell's demon with energy harvesting and demonstrate that information engines in nonequilibrium baths can greatly outperform conventional engines.

6.
Phys Rev Lett ; 128(17): 170602, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570424

RESUMO

The reaction coordinate describing a transition between reactant and product is a fundamental concept in the theory of chemical reactions. Within transition-path theory, a quantitative definition of the reaction coordinate is found in the committor, which is the probability that a trajectory initiated from a given microstate first reaches the product before the reactant. Here we develop an information-theoretic origin for the committor and show how selecting transition paths from a long ergodic equilibrium trajectory induces entropy production which exactly equals the information that system dynamics provide about the reactivity of trajectories. This equality of entropy production and dynamical information generation also holds at the level of arbitrary individual coordinates, providing parallel measures of the coordinate's relevance to the reaction, each of which is maximized by the committor.


Assuntos
Termodinâmica , Probabilidade
7.
Phys Rev Lett ; 129(11): 118102, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154431

RESUMO

Molecular motors work collectively to transport cargo within cells, with anywhere from one to several hundred motors towing a single cargo. For a broad class of collective-transport systems, we use tools from stochastic thermodynamics to derive a new lower bound for the entropy production rate which is tighter than the second law. This implies new bounds on the velocity, efficiency, and precision of general transport systems and a set of analytic Pareto frontiers for identical motors. In a specific model, we identify conditions for saturation of these Pareto frontiers.


Assuntos
Proteínas Motores Moleculares , Transporte Biológico , Proteínas Motores Moleculares/metabolismo , Termodinâmica
8.
Phys Rev Lett ; 129(13): 130601, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206430

RESUMO

We have experimentally realized an information engine consisting of an optically trapped, heavy bead in water. The device raises the trap center after a favorable "up" thermal fluctuation, thereby increasing the bead's average gravitational potential energy. In the presence of measurement noise, poor feedback decisions degrade its performance; below a critical signal-to-noise ratio, the engine shows a phase transition and cannot store any gravitational energy. However, using Bayesian estimates of the bead's position to make feedback decisions can extract gravitational energy at all measurement noise strengths and has maximum performance benefit at the critical signal-to-noise ratio.

9.
Chem Rev ; 120(1): 434-459, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31411455

RESUMO

Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.

10.
J Chem Phys ; 156(19): 194108, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597666

RESUMO

A system's configurational state can be manipulated using dynamic variation of control parameters, such as temperature, pressure, or magnetic field; for finite-duration driving, excess work is required above the equilibrium free-energy change. Minimum-work protocols in multidimensional control-parameter space have the potential to significantly reduce work relative to one-dimensional control. By numerically minimizing a linear-response approximation to the excess work, we design protocols in control-parameter spaces of a 2D Ising model that efficiently drive the system from the all-down to all-up configuration. We find that such designed multidimensional protocols take advantage of more flexible control to avoid control-parameter regions of high system resistance, heterogeneously input and extract work to make use of system relaxation, and flatten the energy landscape, making accessible many configurations that would otherwise have prohibitively high energy and, thus, decreasing spin correlations. Relative to one-dimensional protocols, this speeds up the rate-limiting spin-inversion reaction, thereby keeping the system significantly closer to equilibrium for a wide range of protocol durations and significantly reducing resistance and, hence, work.

11.
Proc Natl Acad Sci U S A ; 116(13): 5920-5924, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867295

RESUMO

Cells must operate far from equilibrium, utilizing and dissipating energy continuously to maintain their organization and to avoid stasis and death. However, they must also avoid unnecessary waste of energy. Recent studies have revealed that molecular machines are extremely efficient thermodynamically compared with their macroscopic counterparts. However, the principles governing the efficient out-of-equilibrium operation of molecular machines remain a mystery. A theoretical framework has been recently formulated in which a generalized friction coefficient quantifies the energetic efficiency in nonequilibrium processes. Moreover, it posits that, to minimize energy dissipation, external control should drive the system along the reaction coordinate with a speed inversely proportional to the square root of that friction coefficient. Here, we demonstrate the utility of this theory for designing and understanding energetically efficient nonequilibrium processes through the unfolding and folding of single DNA hairpins.


Assuntos
Metabolismo Energético , Proteínas Motores Moleculares/metabolismo , DNA/metabolismo , Fricção , Modelos Teóricos , Conformação de Ácido Nucleico , Termodinâmica
12.
J Chem Phys ; 153(24): 244119, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380076

RESUMO

Free energy differences are a central quantity of interest in physics, chemistry, and biology. We develop design principles that improve the precision and accuracy of free energy estimators, which have potential applications to screening for targeted drug discovery. Specifically, by exploiting the connection between the work statistics of time-reversed protocol pairs, we develop near-equilibrium approximations for moments of the excess work and analyze the dominant contributions to the precision and accuracy of standard nonequilibrium free-energy estimators. Within linear response, minimum-dissipation protocols follow the geodesics of the Riemannian metric induced by the Stokes friction tensor. We find that the next-order contribution arises from the rank-3 supra-Stokes tensor that skews the geometric structure such that minimum-dissipation protocols follow the geodesics of a generalized cubic Finsler metric. Thus, near equilibrium, the supra-Stokes tensor determines the leading-order contribution to the bias of bidirectional free-energy estimators.

13.
Proc Natl Acad Sci U S A ; 114(42): 11057-11062, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29073016

RESUMO

Biomolecular machines consume free energy to break symmetry and make directed progress. Nonequilibrium ATP concentrations are the typical free energy source, with one cycle of a molecular machine consuming a certain number of ATP, providing a fixed free energy budget. Since evolution is expected to favor rapid-turnover machines that operate efficiently, we investigate how this free energy budget can be allocated to maximize flux. Unconstrained optimization eliminates intermediate metastable states, indicating that flux is enhanced in molecular machines with fewer states. When maintaining a set number of states, we show that-in contrast to previous findings-the flux-maximizing allocation of dissipation is not even. This result is consistent with the coexistence of both "irreversible" and reversible transitions in molecular machine models that successfully describe experimental data, which suggests that, in evolved machines, different transitions differ significantly in their dissipation.


Assuntos
Transferência de Energia , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas Motores Moleculares
14.
Entropy (Basel) ; 20(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-33265796

RESUMO

A stochastic system under the influence of a stochastic environment is correlated with both present and future states of the environment. Such a system can be seen as implicitly implementing a predictive model of future environmental states. The non-predictive model complexity has been shown to lower-bound the thermodynamic dissipation. Here we explore these statistical and physical quantities at steady state in simple models. We show that under quasi-static driving this model complexity saturates the dissipation. Beyond the quasi-static limit, we demonstrate a lower bound on the ratio of this model complexity to total dissipation, that is realized in the limit of weak driving.

15.
Entropy (Basel) ; 20(5)2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30393452

RESUMO

While Langevin integrators are popular in the study of equilibrium properties of complex systems, it is challenging to estimate the timestep-induced discretization error: the degree to which the sampled phase-space or configuration-space probability density departs from the desired target density due to the use of a finite integration timestep. Sivak et al., introduced a convenient approach to approximating a natural measure of error between the sampled density and the target equilibrium density, the Kullback-Leibler (KL) divergence, in phase space, but did not specifically address the issue of configuration-space properties, which are much more commonly of interest in molecular simulations. Here, we introduce a variant of this near-equilibrium estimator capable of measuring the error in the configuration-space marginal density, validating it against a complex but exact nested Monte Carlo estimator to show that it reproduces the KL divergence with high fidelity. To illustrate its utility, we employ this new near-equilibrium estimator to assess a claim that a recently proposed Langevin integrator introduces extremely small configuration-space density errors up to the stability limit at no extra computational expense. Finally, we show how this approach to quantifying sampling bias can be applied to a wide variety of stochastic integrators by following a straightforward procedure to compute the appropriate shadow work, and describe how it can be extended to quantify the error in arbitrary marginal or conditional distributions of interest.

16.
PLoS Comput Biol ; 10(9): e1003826, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25254493

RESUMO

Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies--such as constitutive expression or graded response--for regulating protein levels in response to environmental inputs. We propose a general framework-here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient-to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.


Assuntos
Enzimas/metabolismo , Metabolismo , Modelos Biológicos , Biologia de Sistemas , Algoritmos , Teorema de Bayes , Meio Ambiente , Processamento de Sinais Assistido por Computador
17.
Phys Rev E ; 109(1): L012101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366465

RESUMO

Bounding and estimating entropy production has long been an important goal of nonequilibrium thermodynamics. We recently derived a lower bound on the total and subsystem entropy production rates of continuous stochastic systems. This "Jensen bound" has led to fundamental limits on the performance of collective transport systems and permitted thermodynamic inference of free-energy transduction between components of bipartite molecular machines. Our original derivation relied on a number of assumptions, which restricted the bound's regime of applicability. Here we derive the Jensen bound far more generally for multipartite overdamped Langevin dynamics. We then consider several extensions, allowing for position-dependent diffusion coefficients, underdamped dynamics, and non-multipartite overdamped dynamics. Our results extend the Jensen bound to a far broader class of systems.

18.
Phys Rev E ; 109(3-1): 034115, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632770

RESUMO

Molecular motors fulfill critical functions within all living beings. Understanding their underlying working principles is therefore of great interest. Here we develop a simple model inspired by the two-component biomolecular motor F_{o}-F_{1} ATP synthase. We analyze its energetics and characterize information flows between the machine's components. At maximum output power we find that information transduction plays a minor role for free-energy transduction. However, when the two components are coupled to different environments (e.g., when in contact with heat baths at different temperatures), we show that information flow becomes a resource worth exploiting to maximize free-energy transduction. Our findings suggest that real-world powerful and efficient information engines could be found in machines whose components are subjected to fluctuations of different strength, since in this situation the benefit gained from using information for work extraction can outweigh the costs of information generation.

19.
Phys Rev E ; 108(2-1): 024117, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723713

RESUMO

Designing a protocol to efficiently drive a stochastic system is an active field of research. Here we extend such control theory to an active Ornstein-Uhlenbeck particle (AOUP) in a bistable potential, driven by a harmonic trap. We find that protocols designed to minimize the excess work (up to linear response) perform better than naive protocols with constant velocity for a wide range of protocol durations.

20.
Sci Rep ; 13(1): 21340, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049502

RESUMO

In exponential population growth, variability in the timing of individual division events and environmental factors (including stochastic inoculation) compound to produce variable growth trajectories. In several stochastic models of exponential growth we show power-law relationships that relate variability in the time required to reach a threshold population size to growth rate and inoculum size. Population-growth experiments in E. coli and S. aureus with inoculum sizes ranging between 1 and 100 are consistent with these relationships. We quantify how noise accumulates over time, finding that it encodes-and can be used to deduce-information about the early growth rate of a population.


Assuntos
Escherichia coli , Staphylococcus aureus , Modelos Biológicos , Processos Estocásticos , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA