RESUMO
We propose a novel approach to trap 2 nm Pt nanocrystals using nanoporous two-dimensional supramolecular networks for cavity-confined host-guest recognition process. This will be achieved by taking advantage of two features of supramolecular self-assembly at surfaces: First, its capability to allow the formation of complex 2D architectures, more particularly, nanoporous networks, through noncovalent interactions between organic molecular building-blocks; second, the ability of the nanopores to selectively host and immobilize a large variety of guest species. In this paper, for the first time, we will use isotropic honeycomb networks and anisotropic linear porous supramolecular networks to host 2 nm Pt nanocrystals.
RESUMO
Static measurements are clinically useful in characterising foot morphology, but it remains unclear to what extent it can influence dynamic lower limb performance. Therefore, the purpose of this study was to investigate if foot posture or foot morphology deformation relates to ankle plantarflexion isokinetic strength and specific kinetics variables during jumping using principal component analysis (PCA). Thirty-eight physically active participants performed drop vertical jump (DVJ) onto force platforms and ankle plantarflexion contractions in different modalities on an isokinetic dynamometer. Foot posture was assessed using the Foot Posture Index-6 item, whereas foot one-, two- and three-dimensional morphological deformation was calculated using the Arch Height Index Measurement System. A PCA was applied to the ankle plantarflexion and kinetics performance data and correlations between PCs and foot parameters measured. The analysis revealed 3 PCs within the ankle plantarflexion and DVJ kinetics variables that captured more than 80% of the variability within the data, but none of them showed significant correlations (r ≤ 0.27) with any foot variables. While foot posture and foot morphological deformation remain of interest in characterising foot morphology across individuals, these findings highlight the lack of clinical relevance of these static evaluations at characterising lower limb and ankle performance.