Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Glob Chang Biol ; 30(1): e17089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273490

RESUMO

Given the importance of soil for the global carbon cycle, it is essential to understand not only how much carbon soil stores but also how long this carbon persists. Previous studies have shown that the amount and age of soil carbon are strongly affected by the interaction of climate, vegetation, and mineralogy. However, these findings are primarily based on studies from temperate regions and from fine-scale studies, leaving large knowledge gaps for soils from understudied regions such as sub-Saharan Africa. In addition, there is a lack of data to validate modeled soil C dynamics at broad scales. Here, we present insights into organic carbon cycling, based on a new broad-scale radiocarbon and mineral dataset for sub-Saharan Africa. We found that in moderately weathered soils in seasonal climate zones with poorly crystalline and reactive clay minerals, organic carbon persists longer on average (topsoil: 201 ± 130 years; subsoil: 645 ± 385 years) than in highly weathered soils in humid regions (topsoil: 140 ± 46 years; subsoil: 454 ± 247 years) with less reactive minerals. Soils in arid climate zones (topsoil: 396 ± 339 years; subsoil: 963 ± 669 years) store organic carbon for periods more similar to those in seasonal climate zones, likely reflecting climatic constraints on weathering, carbon inputs and microbial decomposition. These insights into the timescales of organic carbon persistence in soils of sub-Saharan Africa suggest that a process-oriented grouping of soils based on pedo-climatic conditions may be useful to improve predictions of soil responses to climate change at broader scales.


Assuntos
Carbono , Solo , Solo/química , Minerais , Sequestro de Carbono , África Subsaariana
2.
J Environ Manage ; 364: 121427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870790

RESUMO

Tidal wetlands play a critical role in emitting greenhouse gases (GHGs) into the atmosphere; our understanding of the intricate interplay between natural processes and human activities shaping their biogeochemistry and GHG emissions remains lacking. In this study, we delve into the spatiotemporal dynamics and key drivers of the GHG emissions from five tidal wetlands in the Scheldt Estuary by focusing on the interactive impacts of salinity and water pollution, two factors exhibiting contrasting gradients in this estuarine system: pollution escalates as salinity declines. Our findings reveal a marked escalation in GHG emissions when moving upstream, primarily attributed to increased concentrations of organic matter and nutrients, coupled with reduced levels of dissolved oxygen and pH. These low water quality conditions not only promote methanogenesis and denitrification to produce CH4 and N2O, respectively, but also shift the carbonate equilibria towards releasing more CO2. As a result, the most upstream freshwater wetland was the largest GHG emitter with a global warming potential around 35 to 70 times higher than the other wetlands. When moving seaward along a gradient of decreasing urbanization and increasing salinity, wetlands become less polluted and are characterized by lower concentrations of NO3-, TN and TOC, which induces stronger negative impact of elevated salinity on the GHG emissions from the saline wetlands. Consequently, these meso-to polyhaline wetlands released considerably smaller amounts of GHGs. These findings emphasize the importance of integrating management strategies, such as wetland restoration and pollution prevention, that address both natural salinity gradients and human-induced water pollution to effectively mitigate GHG emissions from tidal wetlands.


Assuntos
Gases de Efeito Estufa , Salinidade , Poluição da Água , Áreas Alagadas , Gases de Efeito Estufa/análise , Estuários , Monitoramento Ambiental
3.
Glob Chang Biol ; 29(9): 2591-2607, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36847151

RESUMO

Soil organic carbon (SOC) dynamics depend on soil properties derived from the geoclimatic conditions under which soils develop and are in many cases modified by land conversion. However, SOC stabilization and the responses of SOC to land use change are not well constrained in deeply weathered tropical soils, which are dominated by less reactive minerals than those in temperate regions. Along a gradient of geochemically distinct soil parent materials, we investigated differences in SOC stocks and SOC (Δ14 C) turnover time across soil profile depth between montane tropical forest and cropland situated on flat, non-erosive plateau landforms. We show that SOC stocks and soil Δ14 C patterns do not differ significantly with land use, but that differences in SOC can be explained by the physicochemical properties of soils. More specifically, labile organo-mineral associations in combination with exchangeable base cations were identified as the dominating controls over soil C stocks and turnover. We argue that due to their long weathering history, the investigated tropical soils do not provide enough reactive minerals for the stabilization of C input in either high input (tropical forest) or low-input (cropland) systems. Since these soils exceeded their maximum potential for the mineral related stabilization of SOC, potential positive effects of reforestation on tropical SOC storage are most likely limited to minor differences in topsoil without major impacts on subsoil C stocks. Hence, in deeply weathered soils, increasing C inputs may lead to the accumulation of a larger readily available SOC pool, but does not contribute to long-term SOC stabilization.


Assuntos
Sequestro de Carbono , Carbono , Solo , Florestas , Solo/química , Tempo (Meteorologia)
4.
Field Crops Res ; 283: 108550, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35782166

RESUMO

Efficient utilization of incident solar radiation and rainwater conservation in rain-fed smallholder cropping systems require the development and adoption of cropping systems with high resource use efficiency. Due to the popularity of cassava-maize intercropping and the food security and economic importance of both crops in Nigeria, we investigated options to improve interception of photosynthetically active radiation (IPAR), radiation use efficiency (RUE), soil moisture retention, and yields of cassava and maize in cassava-maize intercropping systems in 8 on-farm researcher-managed multi-location trials between 2017 and 2019 in different agro-ecologies of southern Nigeria. Treatments were a combination of (1) maize planting density (low density at 20,000 maize plants ha-1 versus high density at 40,000 maize plants ha-1, intercropped with 12,500 cassava plants ha-1); (2) fertilizer application and management targeting either the maize crop (90 kg N, 20 kg P and 37 kg K ha-1) or the cassava crop (75 kg N, 20 kg P and 90 kg K ha-1), compared with control without fertilizer application. Cassava and maize development parameters were highest in the maize fertilizer regime, resulting in the highest IPAR at high maize density. The combined intercrop biomass yield was highest at high maize density in the maize fertilizer regime. Without fertilizer application, RUE was highest at low maize density. However, the application of the maize fertilizer regime at high maize density resulted in the highest RUE, soil moisture content, and maize grain yield. Cassava storage root yield was higher in the cassava fertilizer regime than in the maize fertilizer regime. We conclude that improved IPAR, RUE, soil moisture retention, and grain yield on nutrient-limited soils of southern Nigeria, or in similar environments, can be achieved by intercropping 40,000 maize plants ha-1 with 12,500 cassava plants ha-1 and managing the system with the maize fertilizer regime. However, for higher cassava storage root yield, the system should be managed with the cassava fertilizer regime.

5.
Chimia (Aarau) ; 76(7-8): 656-660, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-38071632

RESUMO

Nitrous oxide (N2O) is an important trace gas contributing to global warming and depletion of ozone in the stratosphere. Its increasing abundance is caused mainly by anthropogenic sources, such as application of fertilizers in agriculture or emissions from industry. To understand the N2O global budget, its sources and sinks need to be well-described and quantified. In this project, a new method for N2O source appointment was developed that can help with this task. The method is based on analysis of the eight most abundant isotopic molecules of N2O, using quantum cascade laser absorption spectroscopy (QCLAS). The applicability of the method towards the N2O biogeochemical cycle was demonstrated on a prominent N2O source (bacterial denitrification) and the most important N2O sink (UV photolysis) on samples prepared in laboratory experiments. An extension of the QCLAS method to natural samples can be achieved by hyphenation with a preconcentration technique that increases concentration of the analyte and standardizes the sample matrix. This article provides an overview of currently applied preconcentration techniques in the field of greenhouse-gas analysis and a description of the preconcentration device TREX that will be employed in future projects with the developed QCLAS method.

6.
Nature ; 528(7580): 69-76, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26595276

RESUMO

Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.


Assuntos
Biodiversidade , Saúde , Microbiologia do Solo , Solo/parasitologia , Agricultura , Animais , Anti-Helmínticos/farmacologia , Antraz/microbiologia , Antraz/veterinária , Antibacterianos , Atmosfera/química , Bacillus anthracis/isolamento & purificação , Biomassa , Conservação dos Recursos Naturais , Água Potável , Resistência a Medicamentos , Cadeia Alimentar , Helmintos/isolamento & purificação , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia
7.
Nature ; 517(7534): 365-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25337882

RESUMO

One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the sustainable intensification of agriculture is more limited than often assumed.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Clima , Mudança Climática , Eficiência , Abastecimento de Alimentos , Chuva , Solo
8.
Field Crops Res ; 270: 108193, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366552

RESUMO

Meeting future global staple crop demand requires continual productivity improvement. Many performance indicators have been proposed to track and measure the increase in productivity while minimizing environmental degradation. However, their use has lagged behind theory, and has not been uniform across crops in different geographies. The consequence is an uneven understanding of opportunities for sustainable intensification. Simple but robust key performance indicators (KPIs) are needed to standardize knowledge across crops and geographies. This paper defines a new term 'agronomic gain' based on an improvement in KPIs, including productivity, resource use efficiencies, and soil health that a specific single or combination of agronomic practices delivers under certain environmental conditions. We apply the concept of agronomic gain to the different stages of science-based agronomic innovations and provide a description of different approaches used to assess agronomic gain including yield gap assessment, meta-data analysis, on-station and on-farm studies, impact assessment, panel studies, and use of subnational and national statistics for assessing KPIs at different stages. We mainly focus on studies on rice in sub-Saharan Africa, where large yield gaps exist. Rice is one of the most important staple food crops and plays an essential role in food security in this region. Our analysis identifies major challenges in the assessment of agronomic gain, including differentiating agronomic gain from genetic gain, unreliable in-person interviews, and assessment of some KPIs at a larger scale. To overcome these challenges, we suggest to (i) conduct multi-environment trials for assessing variety × agronomic practice × environment interaction on KPIs, and (ii) develop novel approaches for assessing KPIs, through development of indirect methods using remote-sensing technology, mobile devices for systematized site characterization, and establishment of empirical relationships among KPIs or between agronomic practices and KPIs.

9.
Field Crops Res ; 272: 108283, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34840408

RESUMO

Cassava-maize intercropping is a common practice among smallholder farmers in Southern Nigeria. It provides food security and early access to income from the maize component. However, yields of both crops are commonly low in farmers' fields. Multi-locational trials were conducted in Southern Nigeria in 2016 and 2017 to investigate options to increase productivity and profitability through increased cassava and maize plant densities and fertilizer application. Trials with 4 and 6 treatments in 2016 and 2017, respectively were established on 126 farmers' fields over two seasons with a set of different designs, including combinations of two levels of crop density and three levels of fertilizer rates. The maize crop was tested at low density (LM) with 20,000 plants ha-1 versus high density (HM) with 40,000 plants ha-1. For cassava, low density (LC) had had 10,000 plants ha-1 versus the high density (HC) with 12,500 plants ha-1.; The fertilizer application followed a regime favouring either the maize crop (FM: 90 kg N, 20 kg P and 37 kg K ha-1) or the cassava crop (FC: 75 kg N, 20 kg P and 90 kg K ha-1), next to control without fertilizer application (F0). Higher maize density (HM) increased marketable maize cob yield by 14 % (3700 cobs ha-1) in the first cycle and by 8% (2100 cobs ha-1) in the second cycle, relative to the LM treatment. Across both cropping cycles, fertilizer application increased cob yield by 15 % (5000 cobs ha-1) and 19 % (6700 cobs ha-1) in the FC and FM regime, respectively. Cassava storage root yield increased by 16 % (4 Mg ha-1) due to increased cassava plant density, and by 14 % (4 Mg ha-1) due to fertilizer application (i.e., with both fertilizer regimes) but only in the first cropping cycle. In the second cycle, increased maize plant density (HM) reduced cassava storage root yield by 7% (1.5 Mg ha-1) relative to the LM treatment. However, the negative effect of high maize density on storage root yield was counteracted by fertilizer application. Fresh storage root yield increased by 8% (2 Mg ha-1) in both fertilizer regimes compared to the control without fertilizer application. Responses to fertilizer by cassava and maize varied between fields. Positive responses tended to decline with increasing yields in the control treatment. The average value-to-cost ratio (VCR) of fertilizer use for the FM regime was 3.6 and higher than for the FC regime (VCR = 1.6), resulting from higher maize yields when FM than when FC was applied. Revenue generated by maize constituted 84-91% of the total revenue of the cropping system. The highest profits were achieved with the FM regime when both cassava and maize were grown at high density. However, fertilizer application was not always advisable as 34 % of farmers did not realize a profit. For higher yields and profitability, fertilizer recommendations should be targeted to responsive fields based on soil fertility knowledge.

10.
Glob Chang Biol ; 26(3): 1374-1389, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31665558

RESUMO

The flux and composition of carbon (C) from land to rivers represents a critical component of the global C cycle as well as a powerful integrator of landscape-level processes. In the Congo Basin, an expansive network of streams and rivers transport and cycle terrigenous C sourced from the largest swathe of pristine tropical forest on Earth. Increasing rates of deforestation and conversion to agriculture in the Basin are altering the current regime of terrestrial-to-aquatic biogeochemical cycling of C. To investigate the role of deforestation on dissolved organic and inorganic C (DOC and DIC, respectively) biogeochemistry in the Congo Basin, six lowland streams that drain catchments of varying forest proportion (12%-77%) were sampled monthly for 1 year. Annual mean concentrations of DOC exhibited an asymptotic response to forest loss, while DIC concentrations increased continuously with forest loss. The isotopic signature of DIC became significantly more enriched with deforestation, indicating a shift in source and processes controlling DIC production. The composition of dissolved organic matter (DOM), as revealed by ultra-high-resolution mass spectrometry, indicated that deforested catchments export relatively more aliphatic and heteroatomic DOM sourced from microbial biomass in soils. The DOM compositional results imply that DOM from the deforested sites is more biolabile than DOM from the forest, consistent with the corresponding elevated stream CO2 concentrations. In short, forest loss results in significant and comprehensive shifts in the C biogeochemistry of the associated streams. It is apparent that land-use conversion has the potential to dramatically affect the C cycle in the Congo Basin by reducing the downstream flux of stable, vascular-plant derived DOC while increasing the transfer of biolabile soil C to the atmosphere.


Assuntos
Carbono , Rios , Agricultura , Congo , Florestas
11.
Rapid Commun Mass Spectrom ; 34(20): e8858, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32548934

RESUMO

The isotopic composition of nitrous oxide (N2 O) provides useful information for evaluating N2 O sources and budgets. Due to the co-occurrence of multiple N2 O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2 O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2 O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2 O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2 O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2 O production and reduction processes. More recently, process-based N2 O isotopic models have been developed for natural abundance and 15 N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2 O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2 O isotope community will continue to advance our understanding of N2 O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.

13.
Phytopathology ; 109(12): 2116-2123, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31600112

RESUMO

Fusarium head blight (FHB) is one of the most important cereal diseases worldwide, causing yield losses and contamination of harvested products with mycotoxins. Fusarium graminearum is one of the most common FHB-causing species in wheat and barley cropping systems. We assessed the ability of different botanical extracts to suppress essential stages of the fungal life cycle using three strains of F. graminearum (FG0410, FG2113, and FG1145). The botanicals included aqueous extracts from white mustard (Sinapis alba) seed flour (Pure Yellow Mustard [PYM] and Tillecur [Ti]) as well as milled Chinese galls (CG). At 2% concentration (wt/vol), PYM and Ti completely inhibited growth of mycelium of all F. graminearum strains whereas, at 1%, CG reduced the growth by 65 to 83%, depending on the strain. While PYM and Ti reduced the germination of both conidia and ascospores at 2% (wt/vol), CG was only effective in reducing conidia germination. Perithecia formation of FG0410 but not FG2113 was suppressed by all botanicals. Moreover, application of botanicals on mature perithecia led to a two- to fourfold reduction in discharge of ascospores. Using liquid chromatography (LC) with diode array detection, we quantified the principal glucosinolate component sinalbin of PYM and Ti. LC time-of-flight mass spectrometry was used to demonstrate that the bioactive matrix of CG contains different gallotannins as well as gallic and tannic acids. Possible antifungal mechanisms of the botanical matrices are discussed. The results of this study are promising and suggest that PYM, Ti, and CG should be explored further for efficacy at managing FHB.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Micotoxinas , Extratos Vegetais , Antifúngicos/química , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Esporos Fúngicos/efeitos dos fármacos
14.
Ecology ; 99(2): 503, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29338085

RESUMO

The Century Experiment at the Russell Ranch Sustainable Agriculture Facility at the University of California, Davis provides long-term agroecological data from row crop systems in California's Central Valley starting in 1993. The Century Experiment was initially designed to study the effects of a gradient of water and nitrogen availability on soil properties and crop performance in ten different cropping systems to measure tradeoffs and synergies between agricultural productivity and sustainability. Currently systems include 11 different cropping systems-consisting of four different crops and a cover crop mixture-and one native grass system. This paper describes the long-term core data from the Century Experiment from 1993-2014, including crop yields and biomass, crop elemental contents, aerial-photo-based Normalized Difference Vegetation Index data, soil properties, weather, chemical constituents in irrigation water, winter weed populations, and operational data including fertilizer and pesticide application amounts and dates, planting dates, planting quantity and crop variety, and harvest dates. This data set represents the only known long-term set of data characterizing food production and sustainability in irrigated and rainfed Mediterranean annual cropping systems. There are no copyright restrictions associated with the use of this dataset.

16.
Ecol Appl ; 27(2): 355-362, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28097736

RESUMO

The positive relationship between plant diversity and ecosystem functioning has been criticized for its applicability at large scales and in less controlled environments that are relevant to land management. To inform this gap between ecological theory and application, we compared recovery rates of belowground properties using two chronosequences consisting of continuously cultivated and independently restored fields with contrasting diversity management strategies: grasslands restored with high plant richness and managed for diversity with frequent burning (n = 20) and grasslands restored with fewer species that were infrequently burned (n = 15). Restoration and management for plant diversity resulted in 250% higher plant richness. Greater recovery of roots and more predictable recovery of the active microbial biomass across the high diversity management strategy chronosequence corresponded with faster recovery of soil structure. The high diversity grasslands also had greater nutrient conservation indicated by lower available inorganic nitrogen. Thus, mesic grasslands restored with more species and managed for high plant diversity with frequent burning enhances the rate of belowground ecosystem recovery from long-term disturbance at a scale relevant to conservation practices on the landscape.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Raízes de Plantas/fisiologia , Plantas , Microbiologia do Solo , Solo/química , Pradaria , Illinois , Nitrogênio/metabolismo
17.
J Environ Qual ; 46(2): 237-246, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380558

RESUMO

Through meta-analysis, we synthesize results from field studies on the effect of biochar application on NO emissions and crop yield. We aimed to better constrain the effect of biochar on NO emissions under field conditions, identify significant predictor variables, assess potential synergies and tradeoffs between NO mitigation and yield, and discuss knowledge gaps. The response ratios for yield and NO emissions were weighted by one of two functions: (i) the inverse of the pooled variance or (ii) the inverse of number of observations per field site. Significant emission reductions were observed when weighting by the inverse of the pooled variance (-18.1 to -7.1%) but not when weighting by the number of observations per site (-17.1 to +0.8%), thus revealing a bias in the existing data by sites with more observations. Mean yield increased by 1.7 to 13.8%. Our study shows yield benefits but no robust evidence for NO emission reductions by biochar under field conditions. When weighted by the inverse of the number of observations per site, NO emission reductions were not significantly affected by cropping system, biochar properties of feedstock, pyrolysis temperature, surface area, pH, ash content, application rate, or site characteristics of N rate, N form, or soil pH. Uneven coverage in the range of these predictor variables likely underlies the failure to detect effects. We discuss the need for future biochar field studies to investigate effects of fertilizer N form, sustained and biologically relevant changes in soil moisture, multiple biochars per site, and time since biochar application.


Assuntos
Carvão Vegetal/química , Óxido Nitroso/química , Fertilizantes , Solo/química
18.
Rapid Commun Mass Spectrom ; 30(7): 963-72, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969939

RESUMO

RATIONALE: Because of the wide-ranging appearance and high soil organic carbon (C) content of grasslands, their ecosystems play an important role in the global C cycle. Thus, even small changes in input or output rates lead to significant changes in the soil C content, thereby affecting atmospheric [CO2 ]. Our aim was to examine if a higher C supply provided under elevated CO2 will increase the soil C pool. Special attention was given to respirational processes, where CO2 emission rates and its sources (plant vs. soil) were considered. METHODS: The Giessen-FACE experiment started in 1998 with a moderate CO2 enrichment of +20% and +30% above ambient on an extensively managed grassland. The experiment consists of three control plots where no CO2 is applied, three plots where [CO2 ] is enriched by +20% and one plot receiving [CO2 ] +30%. To exclude initial CO2 step increase effects, a detailed examination of respirational processes over 30 months was carried out after 6 years of CO2 enrichment starting in June 2004. At that time, the δ(13) C signature of the enrichment-CO2 was switched from -25 ‰ to -48 ‰ without a concomitant change in CO2 concentration. RESULTS: After 9 years, the fraction of new C under [CO2 ] +20% was 37 ± 5.4% in the top 7.5 cm but this decreased with depth. No CO2 effect on soil carbon content was detected. Between June 2004 and December 2006, elevated [CO2 ] +20% increased the ecosystem respiration by 13%. The contribution of root respiration to soil respiration was 37 ± 13% (5 cm) and 43 ± 14% (10 cm) for [CO2 ] +20% and 35 ± 13% and 40 ± 13% for [CO2 ] +30%, respectively. CONCLUSIONS: Our findings of an increased C turnover without a net soil C sequestration suggest that the sink strength of grassland ecosystems might decrease in the future, because the additional C may quickly be released as CO2 to the atmosphere. Copyright © 2016 John Wiley & Sons, Ltd.

19.
Glob Chang Biol ; 21(9): 3200-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25990618

RESUMO

Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters.


Assuntos
Ciclo do Carbono , Compostos Orgânicos/química , Fenômenos Fisiológicos Vegetais , Solo/química , Ecossistema , Modelos Biológicos
20.
Glob Chang Biol ; 21(4): 1715-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25216023

RESUMO

Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.


Assuntos
Agricultura/métodos , Carbono/química , Produtos Agrícolas/crescimento & desenvolvimento , Nitrogênio/química , Solo/química , Biomassa , Sequestro de Carbono , Ciclo do Nitrogênio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Triticum/crescimento & desenvolvimento , Vicia faba/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA