Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Cancer ; 143(3): 552-560, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490428

RESUMO

The role of host epigenetic mechanisms in the natural history of low-grade cervical intraepithelial neoplasia (CIN1) is not well characterized. We explored differential methylation of imprinted gene regulatory regions as predictors of the risk of CIN1 regression. A total of 164 patients with CIN1 were recruited from 10 Duke University clinics for the CIN Cohort Study. Participants had colposcopies at enrollment and up to five follow-up visits over 3 years. DNA was extracted from exfoliated cervical cells for methylation quantitation at CpG (cytosine-phosphate-guanine) sites and human papillomavirus (HPV) genotyping. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression to quantify the effect of methylation on CIN1 regression over two consecutive visits, compared to non-regression (persistent CIN1; progression to CIN2+; or CIN1 regression at a single time-point), adjusting for age, race, high-risk HPV (hrHPV), parity, oral contraceptive and smoking status. Median participant age was 26.6 years (range: 21.0-64.4 years), 39% were African-American, and 11% were current smokers. Most participants were hrHPV-positive at enrollment (80.5%). Over one-third of cases regressed (n = 53, 35.1%). Median time-to-regression was 12.6 months (range: 4.5-24.0 months). Probability of CIN1 regression was negatively correlated with methylation at IGF2AS CpG 5 (HR = 0.41; 95% CI = 0.23-0.77) and PEG10 DMR (HR = 0.80; 95% CI = 0.65-0.98). Altered methylation of imprinted IGF2AS and PEG10 DMRs may play a role in the natural history of CIN1. If confirmed in larger studies, further research on imprinted gene DMR methylation is warranted to determine its efficacy as a biomarker for cervical cancer screening.


Assuntos
Metilação de DNA , Impressão Genômica , Sequências Reguladoras de Ácido Nucleico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Adulto , Idoso , Biópsia , Ilhas de CpG , Progressão da Doença , Epigênese Genética , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/etiologia , Adulto Jovem
2.
FASEB J ; 27(2): 665-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23118028

RESUMO

Humans are exposed to low-dose ionizing radiation (LDIR) from a number of environmental and medical sources. In addition to inducing genetic mutations, there is concern that LDIR may also alter the epigenome. Such heritable effects early in life can either be positively adaptive or result in the enhanced formation of diseases, including cancer, diabetes, and obesity. Herein, we show that LDIR significantly increased DNA methylation at the viable yellow agouti (A(vy)) locus in a sex-specific manner (P=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 and 7.6 cGy, with maximum effects at 1.4 and 3.0 cGy (P<0.01). Offspring coat color was concomitantly shifted toward pseudoagouti (P<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring. Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic A(vy) mouse model, epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful.


Assuntos
Antioxidantes/farmacologia , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/efeitos da radiação , Proteína Agouti Sinalizadora/genética , Animais , Sequência de Bases , Ilhas de CpG , DNA/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Exposição Ambiental , Feminino , Cor de Cabelo/genética , Humanos , Masculino , Camundongos , Dados de Sequência Molecular
3.
J Immunol ; 188(5): 2266-75, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22287717

RESUMO

Activation of germline promoters is central to V(D)J recombinational accessibility, driving chromatin remodeling, nucleosome repositioning, and transcriptional read-through of associated DNA. We have previously shown that of the two TCRß locus (Tcrb) D segments, Dß1 is flanked by an upstream promoter that directs its transcription and recombinational accessibility. In contrast, transcription within the DJß2 segment cluster is initially restricted to the J segments and only redirected upstream of Dß2 after D-to-J joining. The repression of upstream promoter activity prior to Tcrb assembly correlates with evidence that suggests DJß2 recombination is less efficient than that of DJß1. Because inefficient DJß2 assembly offers the potential for V-to-DJß2 recombination to rescue frameshifted V-to-DJß1 joints, we wished to determine how Dß2 promoter activity is modulated upon Tcrb recombination. In this study, we show that repression of the otherwise transcriptionally primed 5'Dß2 promoter requires binding of upstream stimulatory factor (USF)-1 to a noncanonical E-box within the Dß2 12-recombination signal sequence spacer prior to Tcrb recombination. USF binding is lost from both rearranged and germline Dß2 sites in DNA-dependent protein kinase, catalytic subunit-competent thymocytes. Finally, genotoxic dsDNA breaks lead to rapid loss of USF binding and gain of transcriptionally primed 5'Dß2 promoter activity in a DNA-dependent protein kinase, catalytic subunit-dependent manner. Together, these data suggest a mechanism by which V(D)J recombination may feed back to regulate local Dß2 recombinational accessibility during thymocyte development.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/imunologia , DNA Intergênico/química , Rearranjo Gênico da Cadeia delta dos Receptores de Antígenos dos Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Fatores Estimuladores Upstream/antagonistas & inibidores , Fatores Estimuladores Upstream/fisiologia , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/imunologia , Regiões 5' não Traduzidas/efeitos da radiação , Animais , Sequência de Bases , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Cobalto , DNA Intergênico/efeitos da radiação , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/efeitos da radiação , Fatores Estimuladores Upstream/genética
4.
Clin Epigenetics ; 16(1): 58, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658973

RESUMO

Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.


Assuntos
Doença de Alzheimer , Metilação de DNA , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/etnologia , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Metilação de DNA/genética , Epigênese Genética/genética , Impressão Genômica/genética , Proteínas NLR/genética , Brancos/genética
5.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293193

RESUMO

Background: Differentially methylated imprint control regions (ICRs) regulate the monoallelic expression of imprinted genes. Their epigenetic dysregulation by environmental exposures throughout life results in the formation of common chronic diseases. Unfortunately, existing Infinium methylation arrays lack the ability to profile these regions adequately. Whole genome bisulfite sequencing (WGBS) is the unique method able to profile these regions, but it is very expensive and it requires not only a high coverage but it is also computationally intensive to assess those regions. Findings: To address this deficiency, we developed a custom methylation array containing 22,819 probes. Among them, 9,757 probes map to 1,088 out of the 1,488 candidate ICRs recently described. To assess the performance of the array, we created matched samples processed with the Human Imprintome array and WGBS, which is the current standard method for assessing the methylation of the Human Imprintome. We compared the methylation levels from the shared CpG sites and obtained a mean R 2 = 0.569. We also created matched samples processed with the Human Imprintome array and the Infinium Methylation EPIC v2 array and obtained a mean R 2 = 0.796. Furthermore, replication experiments demonstrated high reliability (ICC: 0.799-0.945). Conclusions: Our custom array will be useful for replicable and accurate assessment, mechanistic insight, and targeted investigation of ICRs. This tool should accelerate the discovery of ICRs associated with a wide range of diseases and exposures, and advance our understanding of genomic imprinting and its relevance in development and disease formation throughout the life course.

6.
Nucleic Acids Res ; 39(13): 5388-400, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21421564

RESUMO

Differentially methylated regions (DMRs) are stable epigenetic features within or in proximity to imprinted genes. We used this feature to identify candidate human imprinted loci by quantitative DNA methylation analysis. We discovered a unique DMR at the 5'-end of FAM50B at 6p25.2. We determined that sense transcripts originating from the FAM50B locus are expressed from the paternal allele in all human tissues investigated except for ovary, in which expression is biallelic. Furthermore, an antisense transcript, FAM50B-AS, was identified to be monoallelically expressed from the paternal allele in a variety of tissues. Comparative phylogenetic analysis showed that FAM50B orthologs are absent in chicken and platypus, but are present and biallelically expressed in opossum and mouse. These findings indicate that FAM50B originated in Therians after divergence from Prototherians via retrotransposition of a gene on the X chromosome. Moreover, our data are consistent with acquisition of imprinting during Eutherian evolution after divergence of Glires from the Euarchonta mammals. FAM50B expression is deregulated in testicular germ cell tumors, and loss of imprinting occurs frequently in testicular seminomas, suggesting an important role for FAM50B in spermatogenesis and tumorigenesis. These results also underscore the importance of accounting for parental origin in understanding the mechanism of 6p25-related diseases.


Assuntos
Cromossomos Humanos Par 6 , Impressão Genômica , Retroelementos , Proteínas de Xenopus/genética , Animais , Metilação de DNA , Loci Gênicos , Humanos , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/genética , Filogenia , Proteínas , RNA Antissenso/análise , RNA Mensageiro/metabolismo , Neoplasias Testiculares/genética , Proteínas de Xenopus/metabolismo
7.
Res Sq ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37461438

RESUMO

Background: Epigenetic clocks are emerging as a useful tool in many areas of research. Many epigenetic clocks have been developed for adults; however, there are fewer clocks focused on newborns and most are trained using blood from European ancestry populations. In this study, we built an epigenetic clock based on primary human umbilical vein endothelial cells from a racially and ethnically diverse population. Results: Using human umbilical vein endothelial cell [HUVEC]-derived DNA, we calculated epigenetic gestational age using 83 CpG sites selected through elastic net regression. In this study with newborns from different racial/ethnic identities, epigenetic gestational age and clinical gestational age were more highly correlated (r = 0.85), than epigenetic clocks built from adult and other pediatric populations. The correlation was also higher than clocks based on blood samples from newborns with European ancestry. We also found that birth weight was positively associated with epigenetic gestational age acceleration (EGAA), while NICU admission was associated with lower EGAA. Newborns self-identified as Hispanic or non-Hispanic Black had lower EGAA than self-identified as non-Hispanic White. Conclusions: Epigenetic gestational age can be used to estimate clinical gestational age and may help index neonatal development. Caution should be exercised when using epigenetic clocks built from adults with children, especially newborns. We highlight the importance of cell type-specific epigenetic clocks and general pan tissue epigenetic clocks derived from a large racially and ethnically diverse population.

8.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755881

RESUMO

BACKGROUND: Tobacco smoking during pregnancy is associated with metabolic dysfunction in children, but mechanistic insights remain limited. Hypomethylation of cg05575921 in the aryl hydrocarbon receptor repressor (AHRR) gene is associated with in utero tobacco smoke exposure. In this study, we evaluated whether AHRR hypomethylation mediates the association between maternal smoking and metabolic dysfunction in children. METHODS: We assessed metabolic dysfunction using liver fat content (LFC), serum, and clinical data in children aged 7-12 years (n=78) followed since birth. Maternal smoking was self-reported at 12 weeks gestation. Methylation was measured by means of pyrosequencing at 3 sequential CpG sites, including cg05575921, at birth and at ages 7-12. Regression models were used to evaluate whether AHRR methylation mediated the association between maternal smoking and child metabolic dysfunction. RESULTS: Average AHRR methylation at birth was significantly higher among children of nonsmoking mothers compared with children of mothers who smoked (69.8% ± 4.4% vs. 63.5% ± 5.5, p=0.0006). AHRR hypomethylation at birth was associated with higher liver fat content (p=0.01), triglycerides (p=0.01), and alanine aminotransferase levels (p=0.03), and lower HDL cholesterol (p=0.01) in childhood. AHRR hypomethylation significantly mediated associations between maternal smoking and liver fat content (indirect effect=0.213, p=0.018), triglycerides (indirect effect=0.297, p=0.044), and HDL cholesterol (indirect effect = -0.413, p=0.007). AHRR methylation in childhood (n=78) was no longer significantly associated with prenatal smoke exposure or child metabolic parameters (p>0.05). CONCLUSIONS: AHRR hypomethylation significantly mediates the association between prenatal tobacco smoke exposure and features of childhood metabolic dysfunction, despite the lack of persistent hypomethylation of AHRR into childhood. Further studies are needed to replicate these findings and to explore their causal and long-term significance.


Assuntos
Poluição por Fumaça de Tabaco , Recém-Nascido , Feminino , Gravidez , Criança , Humanos , HDL-Colesterol , Poluição por Fumaça de Tabaco/efeitos adversos , Fumar/efeitos adversos , Fumar Tabaco , Metaboloma , Proteínas Repressoras/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
9.
Epigenetics ; 17(13): 1920-1943, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35786392

RESUMO

Imprinted genes - critical for growth, metabolism, and neuronal function - are expressed from one parental allele. Parent-of-origin-dependent CpG methylation regulates this expression at imprint control regions (ICRs). Since ICRs are established before tissue specification, these methylation marks are similar across cell types. Thus, they are attractive for investigating the developmental origins of adult diseases using accessible tissues, but remain unknown. We determined genome-wide candidate ICRs in humans by performing whole-genome bisulphite sequencing (WGBS) of DNA derived from the three germ layers and from gametes. We identified 1,488 hemi-methylated candidate ICRs, including 19 of 25 previously characterized ICRs (https://humanicr.org/). Gamete methylation approached 0% or 100% in 332 ICRs (178 paternally and 154 maternally methylated), supporting parent-of-origin-specific methylation, and 65% were in well-described CTCF-binding or DNaseI hypersensitive regions. This draft of the human imprintome will allow for the systematic determination of the role of early-acquired imprinting dysregulation in the pathogenesis of human diseases and developmental and behavioural disorders.


Assuntos
Metilação de DNA , Impressão Genômica , Adulto , Humanos , Mapeamento Cromossômico , Alelos , Genômica
10.
Infect Agent Cancer ; 16(1): 42, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120615

RESUMO

BACKGROUND: Epigenetic mechanisms are hypothesized to contribute substantially to the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer, although empirical data are limited. METHODS: Women (n = 419) were enrolled at colposcopic evaluation at Duke Medical Center in Durham, North Carolina. Human papillomavirus (HPV) was genotyped by HPV linear array and CIN grade was ascertained by biopsy pathologic review. DNA methylation was measured at differentially methylated regions (DMRs) regulating genomic imprinting of the IGF2/H19, IGF2AS, MESTIT1/MEST, MEG3, PLAGL1/HYMAI, KvDMR and PEG10, PEG3 imprinted domains, using Sequenom-EpiTYPER assays. Logistic regression models were used to evaluate the associations between HPV infection, DMR methylation and CIN risk overall and by race. RESULTS: Of the 419 participants, 20 had CIN3+, 52 had CIN2, and 347 had ≤ CIN1 (CIN1 and negative histology). The median participant age was 28.6 (IQR:11.6) and 40% were African American. Overall, we found no statistically significant association between altered methylation in selected DMRs and CIN2+ compared to ≤CIN1. Similarly, there was no significant association between DMR methylation and CIN3+ compared to ≤CIN2. Restricting the outcome to CIN2+ cases that were HR-HPV positive and p16 staining positive, we found a significant association with PEG3 DMR methylation (OR: 1.56 95% CI: 1.03-2.36). CONCLUSIONS: While the small number of high-grade CIN cases limit inferences, our findings suggest an association between altered DNA methylation at regulatory regions of PEG3 and high grade CIN in high-risk HPV positive cases.

11.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885139

RESUMO

Genomic imprinting is an inherited form of parent-of-origin specific epigenetic gene regulation that is dysregulated by poor prenatal nutrition and environmental toxins. KCNK9 encodes for TASK3, a pH-regulated potassium channel membrane protein that is overexpressed in 40% of breast cancer. However, KCNK9 gene amplification accounts for increased expression in <10% of these breast cancers. Here, we showed that KCNK9 is imprinted in breast tissue and identified a differentially methylated region (DMR) controlling its imprint status. Hypomethylation at the DMR, coupled with biallelic expression of KCNK9, occurred in 63% of triple-negative breast cancers (TNBC). The association between hypomethylation and TNBC status was highly significant in African-Americans (p = 0.006), but not in Caucasians (p = 0.70). KCNK9 hypomethylation was also found in non-cancerous tissue from 77% of women at high-risk of developing breast cancer. Functional studies demonstrated that the KCNK9 gene product, TASK3, regulates mitochondrial membrane potential and apoptosis-sensitivity. In TNBC cells and non-cancerous mammary epithelial cells from high-risk women, hypomethylation of the KCNK9 DMR predicts for increased TASK3 expression and mitochondrial membrane potential (p < 0.001). This is the first identification of the KCNK9 DMR in mammary epithelial cells and demonstration that its hypomethylation in breast cancer is associated with increases in both mitochondrial membrane potential and apoptosis resistance. The high frequency of hypomethylation of the KCNK9 DMR in TNBC and non-cancerous breast tissue from high-risk women provides evidence that hypomethylation of the KNCK9 DMR/TASK3 overexpression may serve as a marker of risk and a target for prevention of TNBC, particularly in African American women.

12.
Pediatr Obes ; 16(7): e12763, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33381912

RESUMO

BACKGROUND: Although maternal systemic inflammation is hypothesized to link maternal pre-pregnancy obesity to offspring metabolic dysfunction, patient empirical data are limited. OBJECTIVES: In this study, we hypothesized that pre-pregnancy obesity alters systemic chemo/cytokines concentrations in pregnancy, and this alteration contributes to obesity in children. METHODS: In a multi-ethnic cohort of 361 mother-child pairs, we measured prenatal concentrations of plasma TNF-α, IL-6, IL-8, IL-1ß, IL-4, IFN-γ, IL-12 p70 subunit, and IL-17A using a multiplex ELISA and examined associations of pre-pregnancy obesity on maternal chemo/cytokine levels, and associations of these cytokine levels with offspring body mass index z score (BMI-z) at age 2-6 years using linear regression. RESULTS: After adjusting for maternal smoking, ethnicity, age, and education, pre-pregnancy obesity was associated with increased concentrations of TNF-α (P = .026) and IFN-γ (P = .06). While we found no evidence for associations between TNF-α concentrations and offspring BMI-z, increased IFN-γ concentrations were associated with decreased BMI-z (P = .0002), primarily in Whites (P = .0011). In addition, increased maternal IL-17A concentrations were associated with increased BMI-z in offspring (P = .0005) with stronger associations in African Americans (P = .0042) than Whites (P = .24). CONCLUSIONS: Data from this study are consistent with maternal obesity-related inflammation during pregnancy, increasing the risk of childhood obesity in an ethnic-specific manner.


Assuntos
Citocinas/sangue , Obesidade Materna , Obesidade Infantil , Negro ou Afro-Americano , Índice de Massa Corporal , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Obesidade Materna/epidemiologia , Obesidade Infantil/epidemiologia , Gravidez , População Branca
13.
Cancer Epidemiol Biomarkers Prev ; 18(3): 901-14, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19258476

RESUMO

BACKGROUND: Only 5% of all breast cancers are the result of BRCA1/2 mutations. Methylation silencing of tumor suppressor genes is well described in sporadic breast cancer; however, its role in familial breast cancer is not known. METHODS: CpG island promoter methylation was tested in the initial random periareolar fine-needle aspiration sample from 109 asymptomatic women at high risk for breast cancer. Promoter methylation targets included RARB (M3 and M4), ESR1, INK4a/ARF, BRCA1, PRA, PRB, RASSF1A, HIN-1, and CRBP1. RESULTS: Although the overall frequency of CpG island promoter methylation events increased with age (P<0.0001), no specific methylation event was associated with age. In contrast, CpG island methylation of RARB M4 (P=0.051), INK4a/ARF (P=0.042), HIN-1 (P=0.044), and PRA (P=0.032), as well as the overall frequency of methylation events (P=0.004), was associated with abnormal Masood cytology. The association between promoter methylation and familial breast cancer was tested in 40 unaffected premenopausal women in our cohort who underwent BRCA1/2 mutation testing. Women with BRCA1/2 mutations had a low frequency of CpG island promoter methylation (15 of 15 women had

Assuntos
Neoplasias da Mama/genética , Ilhas de CpG/genética , Biópsia por Agulha Fina , Distribuição de Qui-Quadrado , Inibidor p16 de Quinase Dependente de Ciclina/genética , Citocinas/genética , Metilação de DNA , Feminino , Genes BRCA1 , Genes BRCA2 , Genes Supressores de Tumor , Humanos , Mutação , Reação em Cadeia da Polimerase , Pré-Menopausa , Regiões Promotoras Genéticas/genética , Receptores de Progesterona/genética , Receptores do Ácido Retinoico/genética , Risco , Medição de Risco , Estatísticas não Paramétricas , Proteínas Supressoras de Tumor/genética
14.
Epigenetics ; 14(4): 325-340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773972

RESUMO

Pre-pregnancy obesity is an established risk factor for adverse sex-specific cardiometabolic health in offspring. Epigenetic alterations, such as in DNA methylation (DNAm), are a hypothesized link; however, sex-specific epigenomic targets remain unclear. Leveraging data from the Newborn Epigenetics Study (NEST) cohort, linear regression models were used to identify CpG sites in cord blood leukocytes associated with pre-pregnancy obesity in 187 mother-female and 173 mother-male offsprings. DNAm in cord blood was measured using the Illumina HumanMethylation450k BeadChip. Replication analysis was conducted among the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Associations between pre-pregnancy obesity-associated CpG sites and offspring BMI z-score (BMIz) and blood pressure (BP) percentiles at 4-5-years of age were also examined. Maternal pre-pregnacy obesity was associated with 876 CpGs in female and 293 CpGs in male offspring (false discovery rate <5%). Among female offspring, 57 CpG sites, including the top 18, mapped to the TAPBP gene (range of effect estimates: -0.83% decrease to 4.02% increase in methylation). CpG methylation differences in the TAPBP gene were also observed among males (range of effect estimates: -0.30% decrease to 2.59% increase in methylation). While technically validated, none of the TAPBP CpG sites were replicated in ALSPAC. In NEST, methylation differences at CpG sites of the TAPBP gene were associated with BMI z-score (cg23922433 and cg17621507) and systolic BP percentile (cg06230948) in female and systolic (cg06230948) and diastolic (cg03780271) BP percentile in male offspring. Together, these findings suggest sex-specific effects, which, if causal, may explain observed sex-specific effects of maternal obesity.


Assuntos
Doenças Cardiovasculares/genética , Metilação de DNA , Epigênese Genética , Síndrome Metabólica/genética , Obesidade/genética , Adulto , Pressão Sanguínea , Doenças Cardiovasculares/epidemiologia , Criança , Pré-Escolar , Epigenômica , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido/sangue , Recém-Nascido/crescimento & desenvolvimento , Masculino , Proteínas de Membrana Transportadoras/genética , Síndrome Metabólica/epidemiologia , Obesidade/epidemiologia
15.
Environ Epigenet ; 5(3): dvz014, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31528362

RESUMO

Cadmium (Cd) is a ubiquitous environmental pollutant associated with a wide range of health outcomes including cancer. However, obscure exposure sources often hinder prevention efforts. Further, although epigenetic mechanisms are suspected to link these associations, gene sequence regions targeted by Cd are unclear. Aberrant methylation of a differentially methylated region (DMR) on the MEG3 gene that regulates the expression of a cluster of genes including MEG3, DLK1, MEG8, MEG9 and DIO3 has been associated with multiple cancers. In 287 infant-mother pairs, we used a combination of linear regression and the Getis-Ord Gi* statistic to determine if maternal blood Cd concentrations were associated with offspring CpG methylation of the sequence region regulating a cluster of imprinted genes including MEG3. Correlations were used to examine potential sources and routes. We observed a significant geographic co-clustering of elevated prenatal Cd levels and MEG3 DMR hypermethylation in cord blood (P = 0.01), and these findings were substantiated in our statistical models (ß = 1.70, se = 0.80, P = 0.03). These associations were strongest in those born to African American women (ß = 3.52, se = 1.32, P = 0.01) compared with those born to White women (ß = 1.24, se = 2.11, P = 0.56) or Hispanic women (ß = 1.18, se = 1.24, P = 0.34). Consistent with Cd bioaccumulation during the life course, blood Cd levels increased with age (ß = 0.015 µg/dl/year, P = 0.003), and Cd concentrations were significantly correlated between blood and urine (ρ > 0.47, P < 0.01), but not hand wipe, soil or house dust concentrations (P > 0.05). Together, these data support that prenatal Cd exposure is associated with aberrant methylation of the imprint regulatory element for the MEG3 gene cluster at birth. However, neither house-dust nor water are likely exposure sources, and ingestion via contaminated hands is also unlikely to be a significant exposure route in this population. Larger studies are required to identify routes and sources of exposure.

16.
Environ Health Perspect ; 126(3): 037003, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29529597

RESUMO

BACKGROUND: Imprinted genes are defined by their preferential expression from one of the two parental alleles. This unique mode of gene expression is dependent on allele-specific DNA methylation profiles established at regulatory sequences called imprinting control regions (ICRs). These loci have been used as biosensors to study how environmental exposures affect methylation and transcription. However, a critical unanswered question is whether they are more, less, or equally sensitive to environmental stressors as the rest of the genome. OBJECTIVES: Using cadmium exposure in humans as a model, we aimed to determine the relative sensitivity of ICRs to perturbation of methylation compared to similar, nonimprinted loci in the genome. METHODS: We assayed DNA methylation genome-wide using bisulfite sequencing of 19 newborn cord blood and 20 maternal blood samples selected on the basis of maternal blood cadmium levels. Differentially methylated regions (DMRs) associated with cadmium exposure were identified. RESULTS: In newborn cord blood and maternal blood, 641 and 1,945 cadmium-associated DMRs were identified, respectively. DMRs were more common at the 15 maternally methylated ICRs than at similar nonimprinted loci in newborn cord blood (p=5.64×10-8) and maternal blood (p=6.22×10-14), suggesting a higher sensitivity for ICRs to cadmium. Genome-wide, Enrichr analysis indicated that the top three functional categories for genes that overlapped DMRs in maternal blood were body mass index (BMI) (p=2.0×10-5), blood pressure (p=3.8×10-5), and body weight (p=0.0014). In newborn cord blood, the top three functional categories were BMI, atrial fibrillation, and hypertension, although associations were not significant after correction for multiple testing (p=0.098). These findings suggest that epigenetic changes may contribute to the etiology of cadmium-associated diseases. CONCLUSIONS: We analyzed cord blood and maternal blood DNA methylation profiles genome-wide at nucleotide resolution in individuals selected for high and low blood cadmium levels in the first trimester. Our findings suggest that ICRs may be hot spots for perturbation by cadmium, motivating further study of these loci to investigate potential mechanisms of cadmium action. https://doi.org/10.1289/EHP2085.


Assuntos
Cádmio/toxicidade , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/ética , Impressão Genômica/efeitos dos fármacos , Feminino , Impressão Genômica/genética , Humanos , Recém-Nascido , Masculino , Mães
17.
Psychiatr Genet ; 17(4): 221-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17621165

RESUMO

BACKGROUND: Several candidate gene studies support RELN as susceptibility gene for autism. Given the complex inheritance pattern of autism, it is expected that gene-gene interactions will exist. A logical starting point for examining potential gene-gene interactions is to evaluate the joint effects of genes involved in a common biological pathway. RELN shares a common biological pathway with APOE, and Persico et al. have observed transmission distortion of the APOE-2 allele in autism families. OBJECTIVE: We evaluated RELN and APOE for joint effects in autism susceptibility. METHODS: A total of 470 Caucasian autism families were analyzed (265 multiplex; 168 trios with no family history; 37 positive family history but only one sampled affected). These families were genotyped for 11 RELN polymorphisms, including the 5' untranslated region repeat previously associated with autism, as well as for the APOE functional allele. We evaluated single locus allelic and genotypic association with the pedigree disequilibrium test and geno-PDT, respectively. Multilocus effects were evaluated using the extended version of the multifactorial dimensionality reduction method. RESULTS: For the single locus analyses, there was no evidence for an effect of APOE in our data set. Evidence for association with RELN (rs2,073,559; trio subset P=0.07 PDT; P=0.001 geno-PDT; overall geno-PDT P=0.05), however, was found. For multilocus geno-PDT analysis, the joint genotype of APOE and RELN rs2,073,559 was highly significant (trio subset, global P=0.0001), probably driven by the RELN single locus effect. Using the extended version of the multifactorial dimensionality reduction method to detect multilocus effects, there were no statistically significant associations for any of the n-locus combinations involving RELN or APOE in the overall or multiplex subset. In the trio subset, 1-locus and 2-locus models selected only markers in RELN as best models for predicting autism case status. CONCLUSION: Thus, we conclude that there is no main effect of APOE in our autism data set, nor is there any evidence for a joint effect of APOE with RELN. RELN, however, remains a good candidate for autism susceptibility.


Assuntos
Apolipoproteínas E/genética , Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Serina Endopeptidases/genética , Espectroscopia de Ressonância de Spin Eletrônica , Família , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo Genético , Proteína Reelina , Medição de Risco , Estados Unidos , População Branca
18.
Methods Mol Biol ; 1589: 161-183, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26526297

RESUMO

Genetic studies have been well established for identifying sequence variants associated with phenotypes. With the expanding field of epigenetics, and the growing understanding of epigenetic regulation of gene expression, similar studies can be undertaken to also define associations between epigenetic variation and phenotypes. Of particular interest are imprinted genes, which have parent-of-origin specific regulation and expression, and are key regulators of early development. Herein, we describe methods for examining epigenetic regulation by the two major hallmarks of imprinted genes: differentially methylated regions (DMRs), regulatory DNA sequences with allele specific methylation; and monoallelic expression, the silencing and transcription of opposite alleles in a parent-of-origin specific manner.


Assuntos
Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Impressão Genômica , RNA Longo não Codificante/genética , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA/métodos , Alelos , Humanos , Polimorfismo de Nucleotídeo Único
19.
Epigenomics ; 9(1): 57-75, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27981852

RESUMO

Obesity is a complex and multifactorial disease, which likely comprises multiple subtypes. Emerging data have linked chemical exposures to obesity. As organismal response to environmental exposures includes altered gene expression, identifying the regulatory epigenetic changes involved would be key to understanding the path from exposure to phenotype and provide new tools for exposure detection and risk assessment. In this report, we summarize published data linking early-life exposure to the heavy metals, cadmium and lead, to obesity. We also discuss potential mechanisms, as well as the need for complete coverage in epigenetic screening to fully identify alterations. The keys to understanding how metal exposure contributes to obesity are improved assessment of exposure and comprehensive establishment of epigenetic profiles that may serve as markers for exposures.


Assuntos
Intoxicação por Cádmio/epidemiologia , Epigênese Genética , Intoxicação por Chumbo/epidemiologia , Obesidade/epidemiologia , Animais , Intoxicação por Cádmio/genética , Metilação de DNA , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Humanos , Intoxicação por Chumbo/genética , Obesidade/genética , Obesidade/microbiologia
20.
Environ Health Perspect ; 124(5): 666-73, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26115033

RESUMO

BACKGROUND: Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. OBJECTIVES: The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. METHODS: Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. RESULTS: Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (ß = -0.0014; 95% CI: -0.0023, -0.0005, p = 0.002), stronger in males (ß = -0.0024; 95% CI: -0.0038, -0.0009, p = 0.003) than in females (ß = -0.0009; 95% CI: -0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (ß = -0.0013; 95% CI: -0.0023, -0.0003, p = 0.01) DMR methylation, but primarily in females, (ß = -0.0017; 95% CI: -0.0029, -0.0006, p = 0.005) rather than in males, (ß = -0.0004; 95% CI: -0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (ß = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from 30 to 78 months. CONCLUSIONS: Our findings provide evidence that early childhood lead exposure results in sex-dependent and gene-specific DNA methylation differences in the DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood. CITATION: Li Y, Xie C, Murphy SK, Skaar D, Nye M, Vidal AC, Cecil KM, Dietrich KN, Puga A, Jirtle RL, Hoyo C. 2016. Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ Health Perspect 124:666-673; http://dx.doi.org/10.1289/ehp.1408577.


Assuntos
Desenvolvimento Infantil/fisiologia , Metilação de DNA , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/sangue , Chumbo/sangue , Proteínas de Ciclo Celular/metabolismo , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA