Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7980): 746-752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37758890

RESUMO

Organic semiconductors are carbon-based materials that combine optoelectronic properties with simple fabrication and the scope for tuning by changing their chemical structure1-3. They have been successfully used to make organic light-emitting diodes2,4,5 (OLEDs, now widely found in mobile phone displays and televisions), solar cells1, transistors6 and sensors7. However, making electrically driven organic semiconductor lasers is very challenging8,9. It is difficult because organic semiconductors typically support only low current densities, suffer substantial absorption from injected charges and triplets, and have additional losses due to contacts10,11. In short, injecting charges into the gain medium leads to intolerable losses. Here we take an alternative approach in which charge injection and lasing are spatially separated, thereby greatly reducing losses. We achieve this by developing an integrated device structure that efficiently couples an OLED, with exceptionally high internal-light generation, with a polymer distributed feedback laser. Under the electrical driving of the integrated structure, we observe a threshold in light output versus drive current, with a narrow emission spectrum and the formation of a beam above the threshold. These observations confirm lasing. Our results provide an organic electronic device that has not been previously demonstrated, and show that indirect electrical pumping by an OLED is a very effective way of realizing an electrically driven organic semiconductor laser. This provides an approach to visible lasers that could see applications in spectroscopy, metrology and sensing.

2.
Beilstein J Org Chem ; 18: 944-955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965856

RESUMO

A novel π-conjugated molecule, EtH-T-DI-DTT is reported, which is fused, rigid, and planar, featuring the electron-rich dithieno[3,2-b:2',3'-d]thiophene (DTT) unit in the core of the structure. Adjacent to the electron-donating DTT core, there are indenone units with electron-withdrawing keto groups. To enable solubility in common organic solvents, the fused system is flanked by ethylhexylthiophene groups. The material is a dark, amorphous solid with an onset of absorption at 638 nm in CH2Cl2 solution, which corresponds to an optical gap of 1.94 eV. In films, the absorption onset wavelength is at 701 nm, which corresponds to 1.77 eV. An ionisation energy of 5.5 eV and an electron affinity of 3.3 eV were estimated by cyclic voltammetry measurements. We have applied this new molecule in organic field effect transistors. The material exhibited a p-type mobility up to 1.33 × 10-4 cm2 V-1 s-1.

3.
Acc Chem Res ; 52(6): 1665-1674, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117341

RESUMO

One of the most desirable and advantageous attributes of organic materials chemistry is the ability to tune the molecular structure to achieve targeted physical properties. This can be performed to achieve specific values for the ionization potential or electron affinity of the material, the absorption and emission characteristics, charge transport properties, phase behavior, solubility, processability, and many other properties, which in turn can help push the limits of performance in organic semiconductor devices. A striking example is the ability to make subtle structural changes to a conjugated macromolecule to vary the absorption and emission properties of a generic chemical structure. In this Account, we demonstrate that target properties for specific photonic applications can be achieved from different types of semiconductor structures, namely, monodisperse star-shaped molecules, complex linear macromolecules, and conjugated polymers. The most appropriate material for any single application inevitably demands consideration of a trade-off of various properties; in this Account, we focus on applications such as organic lasers, electrogenerated chemiluminescence, hybrid light emitting diodes, and visible light communications. In terms of synthesis, atom and step economies are also important. The star-shaped structures consist of a core unit with 3 or 4 functional connection points, to which can be attached conjugated oligomers of varying length and composition. This strategy follows a convergent synthetic pathway and allows the isolation of target macromolecules in good yield, high purity, and absolute reproducibility. It is a versatile approach, providing a wide choice of constituent molecular units and therefore varying properties, while the products share many of the desirable attributes of polymers. Constructing linear conjugated macromolecules with multifunctionality can lead to complex synthetic routes and lower atom and step economies, inferior processability, and lower thermal or chemical stability, but these materials can be designed to provide a range of different targeted physical properties. Conventional conjugated polymers, as the third type of structure, often feature so-called "champion" properties. The synthetic challenge is mainly concerned with monomer synthesis, but the final polymerization sequence can be hard to control, leading to variable molecular weights and polydispersities and some degree of inconsistency in the properties of the same material between different synthetic batches. If a champion characteristic persists between samples, then the variation of other properties between batches can be tolerable, depending on the target application. In the case of polymers, we have chosen to study PPV-type polymers with bulky side groups that provide protection of their conjugated backbone from π-π stacking interactions. These polymers exhibit high photoluminescence quantum yields (PLQYs) in films and short radiative lifetimes and are an important benchmark to monodisperse star-shaped systems in terms of different absorption/emission regions. This Account therefore outlines the advantages and special features of monodisperse star-shaped macromolecules for photonic applications but also considers the two alternative classes of materials and highlights the pros and cons of each class of conjugated structure.

4.
J Org Chem ; 85(5): 3407-3416, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31975598

RESUMO

A facile efficient synthetic tool, Buchwald-Hartwig cross-coupling reaction, for the functionalization of 1,2,4,5-tetrazines is presented. Important factors affecting the Buchwald-Hartwig cross-coupling reaction have been optimized. Seven new donor-acceptor tetrazine molecules (TA1-TA7) were conveniently prepared in good to high yields (61-72%). They have been subsequently engaged in the inverse electron demand Diels-Alder (iEDDA) reaction with cyclooctyne. The photophysical and electrochemical properties of the new pyridazines have been studied. Some are fluorescent acting as turn-on probes. More importantly, two pyridazines (DA3 and DA6) exhibit room-temperature phosphorescence (RTP) properties.

5.
Beilstein J Org Chem ; 16: 1066-1074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550921

RESUMO

Two novel carbazole-based compounds 7a and 7b were synthesised as potential candidates for application in organic electronics. The materials were fully characterised by NMR spectroscopy, mass spectrometry, FTIR, thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry, and absorption and emission spectroscopy. Compounds 7a and 7b, both of which were amorphous solids, were stable up to 291 °C and 307 °C, respectively. Compounds 7a and 7b show three distinctive absorption bands: high and mid energy bands due to locally excited (LE) transitions and low energy bands due to intramolecular charge transfer (ICT) transitions. In dichloromethane solutions compounds 7a and 7b gave emission maxima at 561 nm and 482 nm with quantum efficiencies of 5.4% and 97.4% ± 10%, respectively. At positive potential, compounds 7a and 7b gave two different oxidation peaks, respectively: quasi-reversible at 0.55 V and 0.71 V, and reversible at 0.84 V and 0.99 V. At negative potentials, compounds 7a and 7b only exhibited an irreversible reduction peak at -1.86 V and -1.93 V, respectively.

10.
Beilstein J Org Chem ; 20: 672-674, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590539
11.
Beilstein J Org Chem ; 14: 2186-2189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202470

RESUMO

A novel methodology towards fabrication of multilayer organic devices, employing electrochemical polymer growth to form PEDOT and PEDTT layers, is successfully demonstrated. Moreover, careful control of the electrochemical conditions allows the degree of doping to be effectively altered for one of the polymer layers. Raman spectroscopy confirmed the formation and doped states of the PEDOT/PEDTT bilayer. The electrochemical deposition of a bilayer containing a de-doped PEDTT layer on top of doped PEDOT is analogous to a solution-processed organic semiconductor layer deposited on top of a PEDOT:PSS layer without the acidic PSS polymer. However, the poor solubility of electrochemically deposited PEDTT (or other electropolymerised potential candidates) raises the possibility of depositing a subsequent layer via solution-processing.

12.
Beilstein J Org Chem ; 11: 1749-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664595

RESUMO

The aim of this review is to give an update on current progress in the synthesis, properties and applications of thiophene-based conjugated systems bearing tetrathiafulvalene (TTF) units. We focus mostly on the synthesis of poly- and oligothiophenes with TTF moieties fused to the thiophene units of the conjugated backbone either directly or via a dithiin ring. The electrochemical behaviour of these materials and structure-property relationships are discussed. The study is directed towards the development of a new type of organic semiconductors based on these hybrid materials for application in organic field effect transistors and solar cells.

13.
Beilstein J Org Chem ; 11: 1148-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199671

RESUMO

Two novel tetrathiafulvalene (TTF) containing compounds 1 and 2 have been synthesised via a four-fold Stille coupling between a tetrabromo-dithienoTTF 5 and stannylated thiophene 6 or thiazole 4. The optical and electrochemical properties of compounds 1 and 2 have been measured by UV-vis spectroscopy and cyclic voltammetry and the results compared with density functional theory (DFT) calculations to confirm the observed properties. Organic field effect transistor (OFET) devices fabricated from 1 and 2 demonstrated that the substitution of thiophene units for thiazoles was found to increase the observed charge transport, which is attributed to induced planarity through S-N interactions of adjacent thiazole nitrogen atoms and TTF sulfur atoms and better packing in the bulk.

14.
Langmuir ; 30(41): 12429-37, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25259412

RESUMO

We demonstrate the nonaqueous self-assembly of a low-molecular-mass organic gelator based on an electroactive p-type tetrathiafulvalene (TTF)-dipeptide bioconjugate. We show that a TTF moiety appended with diphenylalanine amide derivative (TTF-FF-NH2) self-assembles into one-dimensional nanofibers that further lead to the formation of self-supporting organogels in chloroform and ethyl acetate. Upon doping of the gels with electron acceptors (TCNQ/iodine vapor), stable two-component charge transfer gels are produced in chloroform and ethyl acetate. These gels are characterized by various spectroscopy (UV-vis-NIR, FTIR, and CD), microscopy (AFM and TEM), rheology, and cyclic voltammetry techniques. Furthermore, conductivity measurements performed on TTF-FF-NH2 xerogel nanofiber networks formed between gold electrodes on a glass surface indicate that these nanofibers show a remarkable enhancement in the conductivity after doping with TCNQ.


Assuntos
Dipeptídeos/química , Géis/síntese química , Compostos Heterocíclicos/química , Nanofibras/química , Dipeptídeos/síntese química , Géis/química , Estrutura Molecular
15.
Beilstein J Org Chem ; 10: 2683-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25550732

RESUMO

Two novel triads based on a diketopyrrolopyrrole (DPP) central core and two 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) units attached by thiophene rings have been synthesised having high molar extinction coefficients. These triads were characterised and used as donor materials in small molecule, solution processable organic solar cells. Both triads were blended with PC71BM as an acceptor in different ratios by wt % and their photovoltaic properties were studied. For both the triads a modest photovoltaic performance was observed, having an efficiency of 0.65%. Moreover, in order to understand the ground and excited state properties and vertical absorption profile of DPP and BODIPY units within the triads, theoretical DFT and TDDFT calculations were performed.

16.
Beilstein J Org Chem ; 10: 2704-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25550734

RESUMO

Star-shaped conjugated systems with varying oligofluorene arm length and substitution patterns of the central BODIPY core have been synthesised, leading to two families of compounds, T-B1-T-B4 and Y-B1-Y-B4, with T- and Y-shaped motifs, respectively. Thermal stability, cyclic voltammetry, absorption and photoluminescence spectroscopy of each member of these two families were studied in order to determine their suitability as emissive materials in photonic applications.

17.
ACS Appl Mater Interfaces ; 16(15): 19551-19562, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567787

RESUMO

Highly conductive, transparent, and easily available materials are needed in a wide range of devices, such as sensors, solar cells, and touch screens, as alternatives to expensive and unsustainable materials such as indium tin oxide. Herein, electrospinning was employed to develop fibers of PEDOT:PSS/silver nanowire (AgNW) composites on various substrates, including poly(caprolactone) (PCL), cotton fabric, and Kapton. The influence of AgNWs, as well as the applied voltage of electrospinning on the conductivity of fibers, was thoroughly investigated. The developed fibers showed a sheet resistance of 7 Ω/sq, a conductivity of 354 S/cm, and a transmittance value of 77%, providing excellent optoelectrical properties. Further, the effect of bending on the fibers' electrical properties was analyzed. The sheet resistance of fibers on the PCL substrate increased slightly from 7 to 8 Ω/sq, after 1000 bending cycles. Subsequently, as a proof of concept, the nanofibers were evaluated as electrode material in a triboelectric nanogenerator (TENG)-based energy harvester, and they were observed to enhance the performance of the TENG device (78.83 V and 7 µA output voltage and current, respectively), as compared to the same device using copper electrodes. These experiments highlight the untapped potential of conductive electrospun fibers for flexible and transparent electronics.

18.
Opt Express ; 21(12): 14362-7, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787624

RESUMO

Organic semiconductor lasers were fabricated by UV-nanoimprint lithography with thresholds as low as 57 W/cm(2) under 4 ns pulsed operation. The nanoimprinted lasers employed mixed-order distributed feedback resonators, with second-order gratings surrounded by first-order gratings, combined with a light-emitting conjugated polymer. They were pumped by InGaN LEDs to produce green-emitting lasers, with thresholds of 208 W/cm(2) (102 nJ/pulse). These hybrid lasers incorporate a scalable UV-nanoimprint lithography process, compatible with high-performance LEDs, therefore we have demonstrated a coherent, compact, low-cost light source.


Assuntos
Lasers , Impressão Molecular/métodos , Nanotecnologia/instrumentação , Polímeros/química , Transdutores , Transferência de Energia , Retroalimentação , Polímeros/efeitos da radiação
19.
Macromol Rapid Commun ; 34(16): 1330-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23877889

RESUMO

The chemical synthesis of a novel polyfuran, poly(2,3-bis(hexylthio)-[1,4]dithiino[2,3-c]furan) (PBDF), substituted at the 2,3-positions with an S-alkylated dithiin unit, is reported. The new polymer has been characterized in terms of its electronic absorption, electrochemical, and thermal properties. Employment of the dithiin moiety provides intrinsic additional electroactivity, as well as a functional handle for substitution with alkyl groups, enhancing the processability of the polymer. The new polymer is compared with the closely related and well-established literature compounds PEDOT and PEDTT as well-studied, highly chalcogenated polythiophenes.


Assuntos
Eletrônica , Furanos/química , Polímeros/síntese química , Técnicas Eletroquímicas , Oxirredução , Polímeros/química , Teoria Quântica , Temperatura
20.
Beilstein J Org Chem ; 9: 1243-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23843920

RESUMO

Oligofluorene-functionalised truxenes containing perfluorohexylthiophene units at the terminal positions on the arms were synthesised, and their optical and electrochemical properties were investigated to determine the effect that the perfluorohexylthiophene unit has on the HOMO and LUMO properties of the oligomers. By synthesising a molecule with longer oligofluorene arms the effects of the perfluorohexylthiophene unit on larger oligomers was explored. The effect of steric hindrance from the perfluorohexyl chain was also evaluated by altering the position of the chain on the thiophene moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA