Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(10): e1011452, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39453979

RESUMO

Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen. We expand on this approach by analysing the graph and creating synteny based single-copy orthogroups for all genes. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogen Peronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates that P. effusa genomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, virulence related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.


Assuntos
Variações do Número de Cópias de DNA , Peronospora , Doenças das Plantas , Spinacia oleracea , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Variações do Número de Cópias de DNA/genética , Spinacia oleracea/genética , Spinacia oleracea/microbiologia , Peronospora/genética , Peronospora/patogenicidade , Virulência/genética , Genômica/métodos , Elementos de DNA Transponíveis/genética , Sintenia/genética , Oomicetos/genética , Oomicetos/patogenicidade , Resistência à Doença/genética
2.
Fungal Genet Biol ; 175: 103925, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244012

RESUMO

Phyllosticta citricarpa is an important citrus-pathogen and a quarantine organism in the European Union. Its recently described relative, P. paracitricarpa, is very closely related and not listed as a quarantine organism. P. paracitricarpa is very difficult to distinguish from P. citricarpa, since its morphological features overlap and the barcoding gene sequences that were originally used to delimit them as distinct species have a low number of species-specific polymorphisms that have subsequently been shown to overlap between the two clades. Therefore, we performed extensive genomic analyses to determine whether the genetic variation between P. citricarpa and P. paracitricarpa strains should be considered to represent infraspecific variation within P. citricarpa, or whether it is indicative of distinct species. Using a phylogenomic analysis with 3,000 single copy ortholog genes and whole-genome comparisons, we determined that the variation between P. citricarpa and P. paracitricarpa can be considered as infraspecies variation within P. citricarpa. We also determined the level of variation in mitochondrial assemblies of several Phyllosticta species and concluded there are only minimal differences between the assemblies of P. citricarpa and P. paracitricarpa. Thus, using several orthogonal approaches, we here demonstrate that variation within the nuclear and mitochondrial genomes of other Phyllosticta species is larger than variation between genomes obtained from P. citricarpa and P. paracitricarpa strains. Thus, P. citricarpa and P. paracitricarpa should be considered as conspecific.

3.
Environ Microbiol ; 24(3): 1622-1637, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35191594

RESUMO

Peronospora effusa causes downy mildew, the economically most important disease of cultivated spinach worldwide. To date, 19 P. effusa races have been denominated based on their capacity to break spinach resistances, but their genetic diversity and the evolutionary processes that contribute to race emergence are unknown. Here, we performed the first systematic analysis of P. effusa races showing that those emerge by both asexual and sexual reproduction. Specifically, we studied the diversity of 26 P. effusa isolates from 16 denominated races based on mitochondrial and nuclear comparative genomics. Mitochondrial genomes based on long-read sequencing coupled with diversity assessment based on short-read sequencing uncovered two mitochondrial haplogroups, each with distinct genome organization. Nuclear genome-wide comparisons of the 26 isolates revealed that 10 isolates from six races could clearly be divided into three asexually evolving groups, in concordance with their mitochondrial phylogeny. The remaining isolates showed signals of reticulated evolution and discordance between nuclear and mitochondrial phylogenies, suggesting that these evolved through sexual reproduction. Increased understanding of this pathogen's reproductive modes will provide the framework for future studies into the molecular mechanisms underlying race emergence and into the P. effusa-spinach interaction, thus assisting in sustainable production of spinach through knowledge-driven resistance breeding.


Assuntos
Oomicetos , Peronospora , Peronospora/genética , Doenças das Plantas , Reprodução/genética , Spinacia oleracea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA