Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 116: 227-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076322

RESUMO

Alpha crystallins are small heat shock proteins essential to normal ocular lens function. They also help maintain homeostasis in many non-ocular vertebrate tissues and their expression levels change in multiple diseases of the nervous and cardiovascular system and during cancer. The specific roles that α-crystallins may play in eye development are unclear. Studies with knockout mice suggested that only one of the two mammalian α-crystallins is required for normal early lens development. However, studies in two fish species suggested that reduction of αA-crystallin alone could inhibit normal fiber cell differentiation, cause cataract and contribute to lens degeneration. In this study we used synthetic antisense morpholino oligomers to suppress the expression of zebrafish αA-crystallin to directly test the hypothesis that, unlike mammals, the zebrafish requires αA-crystallin for normal early lens development. Despite the reduction of zebrafish αA-crystallin protein to undetectable levels by western analysis through 4 days of development we found no changes in fiber cell differentiation, lens morphology or transparency. In contrast, suppression of AQP0a expression, previously shown to cause lens cataract, produced irregularly shaped lenses, delay in fiber cell differentiation and lens opacities detectable by confocal microscopy. The normal development observed in αA-crystallin deficient zebrafish embryos may reflect similarly non-essential roles for this protein in the early stages of both zebrafish and mammalian lens development. This finding has ramifications for a growing number of researchers taking advantage of the zebrafish's transparent external embryos to study vertebrate eye development. Our demonstration that lens cataracts can be visualized in three-dimensions by confocal microscopy in a living zebrafish provides a new tool for studying the causes, development and prevention of lens opacities.


Assuntos
Catarata/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico/genética , Cristalino/metabolismo , RNA/genética , Peixe-Zebra/embriologia , Cadeia A de alfa-Cristalina/genética , Animais , Western Blotting , Catarata/metabolismo , Catarata/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico/biossíntese , Cristalino/embriologia , Masculino , Fenótipo , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Cadeia A de alfa-Cristalina/biossíntese
2.
PLoS One ; 7(3): e34438, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479631

RESUMO

Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution.


Assuntos
Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/metabolismo , Cadeia A de alfa-Cristalina/química , Cadeia A de alfa-Cristalina/metabolismo , Aclimatação , Sequência de Aminoácidos , Animais , Peixes , Proteínas de Choque Térmico Pequenas/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Cadeia A de alfa-Cristalina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA