Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 23(7): 1172-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24861137

RESUMO

This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.


Assuntos
Daphnia/metabolismo , Ouro/farmacocinética , Nanopartículas/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Testes de Toxicidade Aguda
2.
Water Res ; 197: 117109, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857893

RESUMO

Tracer tests represent a well-established method for delineating key environmental processes in various media and engineered systems. Tracers like Rhodamine B and WT are frequently applied due to their strong fluorescence even at low concentrations.. However, due to a lack of ecotoxicological data, limit values for these tracers cannot be determined. This study fills this critical data gap by providing ecotoxicity data for Rhodamine B and WT using a battery of short-term standardized tests, including growth rate inhibition tests with algae (Raphidocelis subcapitata) and lethality tests using crustaceans (Daphnia magna) and zebrafish (Danio rerio) embryos, and estimating EQS for surface water. For Rhodamine B, the effective and lethal concentration (EC50 and LC50) -causing 50% toxicity were in the range of 14-24 mg/L. For Rhodamine WT, no statistically significant effects were observed (p<0.05) at the tsted concentrations (up to 91, 100 and 200 mg/L for algae, crustaceans and fish embryos, respectively). Thus for all tested organisms, Rhodamine B was more toxic than Rhodamine WT (more than 14 times more toxic for R. subcapitata, 5.6 times for D. magna, 15 times for D. rerio embryos,based on EC10 and LC10 values). These results signify that read-across assessments using ecotoxicity data obtained with Rhodamine B is not advisable for estimating the ecotoxicity of Rhodamine WT. The annual-average quality standard (AA-QS) and maximum allowable concentration quality standard (MAC-QS) for Rhodamine B were found to be 14 and 140 µg/L, respectively. For Rhodamine WT, the corresponding values were estimated to >91 µg/L (AA-QS) and >910 µg/L (MAC-QS). Hence, concentrations below 140 µg/L or 910 µg/L for Rhodamine B and WT, respectively, are not expected to pose a risk to aquatic freshwater life in the case of intermittent discharges, e.g. tracer experiments released in streams.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Daphnia , Rodaminas , Poluentes Químicos da Água/toxicidade
3.
Nanotoxicology ; 11(3): 351-359, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28286999

RESUMO

A major challenge in nanoecotoxicology is finding suitable methods to determine the uptake and localisation of nanoparticles on a whole-organism level. Some uptake methods have been associated with artefacts induced by sample preparation, including staining for electron microscopy. This study used light sheet microscopy (LSM) to define the uptake and localisation of fluorescently labelled nanoparticles in living organisms with minimal sample preparation. Zebrafish (Danio rerio) were exposed to fluorescent gold nanoparticles (Au NPs) and fluorescent polystyrene NPs via aqueous or dietary exposure. The in vivo uptake and localisation of NPs were investigated using LSM at different time points (1, 3 and 7 days). A time-dependent increase in fluorescence was observed in the gut after dietary exposure to both Au NPs and polystyrene NPs. No fluorescence was observed within gut epithelia regardless of the NP exposure route indicating no or limited uptake via intestinal villi. Fish exposed to polystyrene NPs through the aqueous phase emitted fluorescence signals from the gills and intestine. Fluorescence was also detected in the head region of the fish after aqueous exposure to polystyrene NPs. This was not observed for Au NPs. Aqueous exposure to Au NPs resulted in increased relative swimming distance, while no effect was observed for other exposures. This study supports that the route of exposure is essential for the uptake and subsequent localisation of nanoparticles in zebrafish. Furthermore, it demonstrates that the localisation of NPs in whole living organisms can be visualised in real-time, using LSM.


Assuntos
Nanopartículas/metabolismo , Peixe-Zebra/metabolismo , Animais , Artemia , Fluorescência , Microscopia , Poliestirenos/metabolismo
4.
Aquat Toxicol ; 157: 101-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456224

RESUMO

The potential uptake and trophic transfer of nanoparticles (NP) is not well understood so far and for ZnO NP the data presented in peer-reviewed literature is limited. In this paper the influence of surface functionalization on the uptake and depuration behavior of ZnO NP, ZnO-OH NP and ZnO-octyl NP in D. magna was studied. Bulk ZnO particles (≤5 µm) and ZnCl2 were used as references for uptake of particles and dissolved species of Zn, respectively. Furthermore, the trophic transfer of ZnO NP and ZnO-octyl NP from daphnids (Daphnia magna) to zebra fish (Danio rerio) was studied. For ZnO NP and ZnO-octyl NP fast uptakes in D. magna were observed, whereas no measurable uptake took place for ZnO-OH NP. Lower body burden of ZnCl2 was found compared to both ZnO NP and ZnO-octyl. Contrary, the body burden for bulk ZnO was higher than that of ZnO NP but lower than ZnO-octyl. The higher body burdens found for functionalized ZnO-octyl NP than for non-functionalized ZnO NP showed that that the functionalization of the NP has a high influence on the uptake and depuration behavior. Though no mortality was observed, the resulting body burdens were 9.6 times (ZnO NP) and 47 times (ZnO-octyl NP) higher than toxic levels reported for zinc in D. magna. Consequently, the zinc recovered in the animals was not solely due to soluble zinc, but agglomerates/aggregates of ZnO NP or ZnO-octyl NP contributed to the body burdens. The trophic transfer study showed uptake of both ZnO NP and ZnO-octyl NP reaching more than tenfold higher levels than those obtained through aqueous exposure in other studies. This study contributes to expand the available data on uptake behavior of differently functionalized ZnO NP in D. magna and the potential trophic transfer from zooplankton to fish.


Assuntos
Daphnia/metabolismo , Nanopartículas/metabolismo , Peixe-Zebra/metabolismo , Óxido de Zinco/metabolismo , Animais , Cloretos/análise , Cadeia Alimentar , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/análise , Compostos de Zinco/análise , Óxido de Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA