Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1098, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980682

RESUMO

Despite its importance for public transportation, communication within organizations or the general understanding of organized knowledge, our understanding of how human individuals navigate complex networked systems is still limited owing to the lack of datasets recording a sufficient amount of navigation paths of individual humans. Here, we analyse 10587 paths recorded from 259 human subjects when navigating between nodes of a complex word-morph network. We find a clear presence of systematic detours organized around individual hierarchical scaffolds guiding navigation. Our dataset is the first enabling the visualization and analysis of scaffold hierarchies whose presence and role in supporting human navigation is assumed in existing navigational models. By using an information-theoretic argumentation, we argue that taking short detours following the hierarchical scaffolds is a clear sign of human subjects simplifying the interpretation of the complex networked system by an order of magnitude. We also discuss the role of these scaffolds in the phases of learning to navigate a network from scratch.


Assuntos
Aprendizagem/fisiologia , Navegação Espacial/fisiologia , Conjuntos de Dados como Assunto , Humanos , Resolução de Problemas/fisiologia , Tempo de Reação , Meios de Transporte
2.
Sci Rep ; 7(1): 7243, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775278

RESUMO

The last two decades of network science have discovered stunning similarities in the topological characteristics of real life networks (many biological, social, transportation and organizational networks) on a strong empirical basis. However our knowledge about the operational paths used in these networks is very limited, which prohibits the proper understanding of the principles of their functioning. Today, the most widely adopted hypothesis about the structure of the operational paths is the shortest path assumption. Here we present a striking result that the paths in various networks are significantly stretched compared to their shortest counterparts. Stretch distributions are also found to be extremely similar. This phenomenon is empirically confirmed on four networks from diverse areas of life. We also identify the high-level path selection rules nature seems to use when picking its paths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA