RESUMO
AbstractGregarious species must distinguish group members from nongroup members. Olfaction is important for group recognition in social insects and mammals but rarely studied in birds, despite birds using olfaction in social contexts from species discrimination to kin recognition. Olfactory group recognition requires that groups have a signature odor, so we tested for preen oil and feather chemical similarity in group-living smooth-billed anis (Crotophaga ani). Physiology affects body chemistry, so we also tested for an effect of egg-laying competition, as a proxy for reproductive status, on female chemical similarity. Finally, the fermentation hypothesis for chemical recognition posits that host-associated microbes affect host odor, so we tested for covariation between chemicals and microbiota. Group members were more chemically similar across both body regions. We found no chemical differences between sexes, but females in groups with less egg-laying competition had more similar preen oil, suggesting that preen oil contains information about reproductive status. There was no overall covariation between chemicals and microbes; instead, subsets of microbes could mediate olfactory cues in birds. Preen oil and feather chemicals showed little overlap and may contain different information. This is the first demonstration of group chemical signatures in birds, a finding of particular interest given that smooth-billed anis live in nonkin breeding groups. Behavioral experiments are needed to test whether anis can distinguish group members from nongroup members using odor cues.
Assuntos
Aves , Plumas , Animais , Feminino , Aves/fisiologia , Reprodução , Olfato , MamíferosRESUMO
Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of H2S had indicated the occurrence of microbial sulphate reduction. The reclamation project involved construction of a three compartment system consisting of a freshwater wetland on top of a sand cap overlying a composite tailings (CT) deposit. Radiocarbon analysis demonstrated that both dissolved and sediment associated organic carbon associated with the deepest compartments (the CT and sand cap) was primarily fossil (Δ14C = -769 to -955) while organic carbon in the overlying peat was hundreds to thousands of years old (Δ14C = -250 to -350). Radiocarbon contents of sediment associated microbial phospholipid fatty acids (PLFA) were consistent with the sediment bulk organic carbon pools (Peat: Δ14CPLFA = -257; Sand cap Δ14CPLFA = -805) indicating that these microbes were using sediment associated carbon. In contrast, microbial PLFA grown on biofilm units installed in wells within the deepest compartments contained much more modern carbon that the associated bulk carbon pools. This implied that the transfer of relatively more modern carbon was stimulating the microbial community at depth within the system. Correlation between cellular abundance estimates based on PLFA concentrations and the Δ14CPLFA indicated that the utilization of this more modern carbon was stimulating the microbial community at depth. These results highlight the importance of understanding the occurrence and potential outcomes of the introduction of relatively bioavailable carbon to mine wastes in order to predict and manage the performance of reclamation strategies.
Assuntos
Carbono/análise , Campos de Petróleo e Gás , Alberta , Recuperação e Remediação Ambiental , Ácidos Graxos/análise , Sedimentos Geológicos/análise , Resíduos Industriais , Fosfolipídeos/análise , Solo , Microbiologia do Solo , Áreas AlagadasRESUMO
Here, we examine the geobiological response to a whole-lake alum (aluminum sulfate) treatment (2016) of Base Mine Lake (BML), the first pilot-scale pit lake established in the Alberta oil sands region. The rationale for trialing this management amendment was based on its successful use to reduce internal phosphorus loading to eutrophying lakes. Modest increases in water cap epilimnetic oxygen concentrations, associated with increased Secchi depths and chlorophyll-a concentrations, were co-incident with anoxic waters immediately above the fluid fine tailings (FFT) layer post alum. Decreased water cap nitrate and detectable sulfide concentrations, as well as increased hypolimnetic phospholipid fatty acid abundances, signaled greater anaerobic heterotrophic activity. Shifts in microbial community to groups associated with greater organic carbon degradation (i.e., SAR11-LD12 subclade) and the SRB group Desulfuromonodales emerged post alum and the loss of specialist groups associated with carbon-limited, ammonia-rich restricted niches (i.e., MBAE14) also occurred. Alum treatment resulted in additional oxygen consumption associated with increased autochthonous carbon production, watercap anoxia and sulfide generation, which further exacerbate oxygen consumption associated with on-going FFT mobilized reductants. The results illustrate the importance of understanding the broader biogeochemical implications of adaptive management interventions to avoid unanticipated outcomes that pose greater risks and improve tailings reclamation for oil sands operations and, more broadly, the global mining sector.
RESUMO
Naphthenic acids (NAs) are persistent, toxic contaminants that are found to accumulate in oil sands process-affected water (OSPW) and tailings after bitumen extraction. A number of strategies for the reclamation of oil sands tailings are currently being tested, including the development of the first demonstration pit lake by Syncrude Canada, Base Mine Lake (BML). An important component of reclamation activities is understanding the source and cycling of NAs in such reclamation systems. However, NAs exist as a highly complex mixture of thousands of compounds which makes their analysis an ongoing challenge. Herein, comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC/TOFMS) was used to analyze the methylated extracts of water samples from the water cap and fluid fine tailings (FFT) deposit of BML to characterize the variations in NA distributions between geochemical zones. A collection of (alkylated) monocyclic-, bicyclic-, adamantane-, and thiophene-type carboxylic acids were identified. Total relative abundances were calculated for each NA class (by summation of peak areas of all detected isomers) and minimal variability was detected in the water cap. Total relative abundances for each NA class were either similar or higher in the FFT, relative to the water cap. Examination of isomer distributions indicated that differences in abundance values were generally driven by variations in only one or two isomers of a given NA class. Furthermore, GC × GC revealed distinct isomer profiles were observed between two FFT samples and between the FFT and water cap. While it is not yet clear whether these differences are due to differences in sources of NAs or in their environmental processing, these results illustrate the capability of GC × GC to investigate these questions and thus contribute to the management of these compounds within reclamation or environmental systems.
RESUMO
There is growing evidence that phages with unusually large genomes are common across various microbiomes, but little is known about their genetic inventories or potential ecosystem impacts. In the present study, we reconstructed large phage genomes from freshwater lakes known to contain bacteria that oxidize methane. Of manually curated genomes, 22 (18 are complete), ranging from 159 kilobase (kb) to 527 kb in length, were found to encode the pmoC gene, an enzymatically critical subunit of the particulate methane monooxygenase, the predominant methane oxidation catalyst in nature. The phage-associated PmoC sequences show high similarity to (>90%), and affiliate phylogenetically with, those of coexisting bacterial methanotrophs, including members of Methyloparacoccus, Methylocystis and Methylobacter spp. In addition, pmoC-phage abundance patterns correlate with those of the coexisting bacterial methanotrophs, supporting host-phage relationships. Future work is needed to determine whether phage-associated PmoC has similar functions to additional copies of PmoC encoded in bacterial genomes, thus contributing to growth on methane. Transcriptomics data from Lake Rotsee (Switzerland) showed that some phage-associated pmoC genes were highly expressed in situ and, of interest, that the most rapidly growing methanotroph was infected by three pmoC-phages. Thus, augmentation of bacterial methane oxidation by pmoC-phages during infection could modulate the efflux of this potent greenhouse gas into the environment.
Assuntos
Bacteriófagos/metabolismo , Lagos/virologia , Metano/metabolismo , Methylococcaceae/metabolismo , Methylococcaceae/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Genoma Viral , Lagos/química , Lagos/microbiologia , Methylococcaceae/classificação , Methylococcaceae/genética , Microbiota , Oxirredução , FilogeniaRESUMO
Naphthenic acids (NAs) are naturally occurring in the Athabasca oil sands region (AOSR) and accumulate in tailings as a result of water-based extraction processes. NAs exist as a complex mixture, so the development of an analytical technique to characterize them has been an on-going challenge. The aim of this study was to use comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry to monitor individual NAs within a wetland reclamation site in the AOSR. Samples were collected from four monitoring wells at the site and the extracts were found to contain numerous resolved isomers of classical (monocyclic-, bicyclic-, adamantane-, indane-, and tetralin-type carboxylic acids) and sulfur-containing NAs (thiamonocyclic- and thiophene-type carboxylic acids). The absolute abundances of the monitored NAs were compared between four monitoring wells and unique profiles were observed at each well. Few significant changes in absolute abundances were observed over the sampling period, with the exception of one well (Well 6A). In addition, isomeric percent compositions were calculated for each set of structural isomers, and one-way analysis of variance (ANOVA) and two-dimensional hierarchical cluster analysis revealed high spatial variation at the site. However, consistent distributions were observed at each of the monitoring wells for some sets of NA isomers (such as: adamantane NAs), which may be useful for forensic applications, such as identifying sources of contamination or demonstrating biodegradation. The methods and results presented in this study demonstrate the utility of monitoring individual NAs, since both changes in absolute abundances of individual NAs and the distribution of NA isomers have the ability to provide insight into their sources and the processes controlling their concentrations that are not only of relevance to the Alberta Oil Sands, but also to other petroleum deposits and environmental systems.
RESUMO
Anthropogenically-impacted environments offer the opportunity to discover novel microbial species and metabolisms, which may be undetectable in natural systems. Here, a combined metagenomic and geochemical study in Base Mine Lake, Alberta, Canada, which is the only oil sands end pit lake to date, revealed that nitrification was performed by members from Nitrosomonadaceae, Chloroflexi and unclassified Gammaproteobacteria "MBAE14." While Nitrosomonadaceae and Chloroflexi groups were relatively abundant in the upper oxygenated zones, MBAE14 dominated the hypoxic hypolimnetic zones (approximately 30% of total microbial communities); MBAE14 was not detected in the underlying anoxic tailings. Replication rate analyses indicate that MBAE14 grew in metalimnetic and hypolimnetic water cap regions, most actively at the metalimnetic, ammonia/oxygen transition zone consistent with it putatively conducting nitrification. Detailed genomic analyses of MBAE14 evidenced both ammonia oxidation and denitrification into dinitrogen capabilities. However, the absence of known CO2-fixation genes suggests a heterotrophic denitrifying metabolism. Functional marker genes of ammonia oxidation (amo and hao) in the MBAE14 genome are homologous with those conserved in autotrophic nitrifiers, but not with those of known heterotrophic nitrifiers. We propose that this novel MBAE14 inhabits the specific ammonia-rich, oxygen and labile organic matter-limited conditions occurring in Base Mine Lake which selectively favors mixotrophic coupled nitrifier denitrification metabolism. Our results highlight the opportunities to better constrain biogeochemical cycles from the application of metagenomics to engineered systems associated with extractive resource sectors.
RESUMO
The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175cm high×525cm long) sand aquifer tank for 330days, with a vertical shift in plume position and increased nutrient inputs occurring at ~Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.
Assuntos
Etanol/metabolismo , Água Subterrânea , Poluentes Químicos da Água/metabolismo , Compostos de Amônio/metabolismo , Biodegradação Ambiental , Etanol/análise , Fermentação , Água Subterrânea/química , Hidrogênio/análise , Hidrogênio/metabolismo , Ferro/química , Ferro/metabolismo , Oxirredução , Fósforo/metabolismo , Dióxido de Silício , Análise Espaço-Temporal , Sulfatos/química , Sulfatos/metabolismo , Poluentes Químicos da Água/análiseRESUMO
Stable isotope analysis of chlorinated ethene contaminants was carried out during a bioaugmentation pilot test at Kelly Air Force Base (AFB) in San Antonio Texas. In this pilot test, cis-1,2-dichloroethene (cDCE) was the primary volatile organic compound. A mixed microbial enrichment culture, KB-1, shown in laboratory experiments to reduce chlorinated ethenes to non-toxic ethene, was added to the pilot test area. Following bioaugmentation with KB-1, perchloroethene (PCE), trichloroethene (TCE) and cDCE concentrations declined, while vinyl chloride (VC) concentrations increased and subsequently decreased as ethene became the dominant transformation product. Shifts in carbon isotopic values up to 2.7 per thousand, 6.4 per thousand, 10.9 per thousand and 10.6 per thousand were observed for PCE, TCE, cDCE and VC, respectively, after bioaugmentation, consistent with the effects of biodegradation. While a rising trend of VC concentrations and the first appearance of ethene were indicative of biodegradation by 72 days post-bioaugmentation, the most compelling evidence of biodegradation was the substantial carbon isotope enrichment (2.0 per thousand to 5.0 per thousand) in ä13C(cDCE). Fractionation factors obtained in previous laboratory studies were used with isotope field measurements to estimate first-order cDCE degradation rate constants of 0.12 h(-1) and 0.17 h(-1) at 115 days post-bioaugmentation. These isotope-derived rate constants were clearly lower than, but within a factor of 2-4 of the previously published rate constant calculated in a parallel study at Kelly AFB using chlorinated ethene concentrations. Stable carbon isotopes can provide not only a sensitive means for early identification of the effects of biodegradation, but an additional means to quantify the rates of biodegradation in the field.
Assuntos
Dicloroetilenos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Isótopos de Carbono , Cloro/química , Dicloroetilenos/química , Tetracloroetileno/análise , Texas , Tricloroetileno/análise , Cloreto de Vinil/análise , Água/químicaRESUMO
Modern microbialites are complex microbial communities that interface with abiotic factors to form carbonate-rich organosedimentary structures whose ancestors provide the earliest evidence of life. Past studies primarily on marine microbialites have inventoried diverse taxa and metabolic pathways, but it is unclear which of these are members of the microbialite community and which are introduced from adjacent environments. Here we control for these factors by sampling the surrounding water and nearby sediment, in addition to the microbialites and use a metagenomics approach to interrogate the microbial community. Our findings suggest that the Pavilion Lake microbialite community profile, metabolic potential and pathway distributions are distinct from those in the neighboring sediments and water. Based on RefSeq classification, members of the Proteobacteria (e.g., alpha and delta classes) were the dominant taxa in the microbialites, and possessed novel functional guilds associated with the metabolism of heavy metals, antibiotic resistance, primary alcohol biosynthesis and urea metabolism; the latter may help drive biomineralization. Urea metabolism within Pavilion Lake microbialites is a feature not previously associated in other microbialites. The microbialite communities were also significantly enriched for cyanobacteria and acidobacteria, which likely play an important role in biomineralization. Additional findings suggest that Pavilion Lake microbialites are under viral selection as genes associated with viral infection (e.g CRISPR-Cas, phage shock and phage excision) are abundant within the microbialite metagenomes. The morphology of Pavilion Lake microbialites changes dramatically with depth; yet, metagenomic data did not vary significantly by morphology or depth, indicating that microbialite morphology is altered by other factors, perhaps transcriptional differences or abiotic conditions. This work provides a comprehensive metagenomic perspective of the interactions and differences between microbialites and their surrounding environment, and reveals the distinct nature of these complex communities.
RESUMO
Reductive dechlorination of trichloroethene (TCE) by zero-valent iron produces a systematic enrichment of 13C in the remaining substrate that can be described using a Rayleigh model. In this study, fractionation factors for TCE dechlorination with iron samples from two permeable reactive barriers (PRBs) were established in batch experiments. Samples included original unused iron as well as material from a barrier in Belfast after almost 4 years of operation. Despite the variety of samples, carbon isotope fractionations of TCE were remarkably similar and seemed to be independent of iron origin, reaction rate, and formation of precipitates on the iron surfaces. The average enrichment factor for all experiments was -10.1 per thousand (+/- 0.4 per thousand). These results indicate that the enrichment factor provides a powerful tool to monitor the reaction progress, and thus the performance, of an iron-reactive barrier over time. The strong fractionation observed may also serve as a tool to distinguish between insufficient residence time in the wall and a possible bypassing of the wall by the plume, which should result in an unchanged isotopic signature of the TCE. Although further work is necessary to apply this stable isotope method in the field, it has potential to serve as a unique monitoring tool for PRBs based on zero-valent iron.
Assuntos
Isótopos de Carbono/química , Ferro/química , Tricloroetileno/química , Poluentes Químicos da Água , Purificação da Água/métodos , Fracionamento Químico , HumanosRESUMO
The hyperarid core of the Atacama Desert is one of the driest and most inhospitable places on Earth, where life is most commonly found in the interior of rocks (i.e., endolithic habitats). Due to the extreme dryness, microbial activity in these habitats is expected to be low; however, the rate of carbon cycling within these microbial communities remains unknown. We address this issue by characterizing the isotopic composition ((13)C and (14)C) of phospholipid fatty acids (PLFA) and glycolipid fatty acids (GLFA) in colonized rocks from four different sites inside the hyperarid core. δ(13)C results suggest that autotrophy and/or quantitative conversion of organic matter to CO2 are the dominant processes occurring with the rock. Most Δ(14)C signatures of PLFA and GLFA were consistent with modern atmospheric CO2, indicating that endoliths are using atmospheric carbon as a primary carbon source and are also cycling carbon quickly. However, at one site the PLFA contained (14)C from atmospheric nuclear weapons testing that occurred during the 1950s and 1960s, indicating a decadal rate of carbon cycling. At the driest site (Yungay), based on the relative abundance and (14)C content of GLFA and PLFA, there was evidence of possible preservation. Hence, in low-moisture conditions, glycolipids may persist while phospholipids are preferentially hydrolyzed.
Assuntos
Radioisótopos de Carbono/análise , Clima , Microbiologia do Solo , Cromatografia Gasosa-Espectrometria de Massas , América do SulRESUMO
Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. (14) C-dead) carbon to soil microbial communities. Natural abundance (13) C and (14) C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ(13) C values of PLFAs common in type I and II methanotrophs were as negative as -67 and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ(13) C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ(14) C values of select PLFAs (-351 to -936) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35-91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.
Assuntos
Alphaproteobacteria/metabolismo , Ciclo do Carbono , Carvão Mineral , Gammaproteobacteria/metabolismo , Metano/metabolismo , Microbiologia do Solo , Alphaproteobacteria/química , Alphaproteobacteria/classificação , Alphaproteobacteria/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , DNA Bacteriano/análise , DNA Ribossômico/análise , Ácidos Graxos/análise , Gammaproteobacteria/química , Gammaproteobacteria/classificação , Gammaproteobacteria/crescimento & desenvolvimento , Metano/análise , Methylocystaceae/classificação , Methylocystaceae/crescimento & desenvolvimento , Methylocystaceae/metabolismo , Fosfolipídeos/análise , Solo/químicaRESUMO
In a petroleum impacted land-farm soil in Sarnia, Ontario, compound-specific natural abundance radiocarbon analysis identified biodegradation by the soil microbial community as a major pathway for hydrocarbon removal in a novel remediation system. During remediation of contaminated soils by a plant growth promoting rhizobacteria enhanced phytoremediation system (PEPS), the measured Delta(14)C of phospholipid fatty acid (PLFA) biomarkers ranged from -793 per thousand to -897 per thousand, directly demonstrating microbial uptake and utilization of petroleum hydrocarbons (Delta(14)C(PHC) = -1000 per thousand). Isotopic mass balance indicated that more than 80% of microbial PLFA carbon was derived from petroleum hydrocarbons (PHC) and a maximum of 20% was obtained from metabolism of more modern carbon sources. These PLFA from the contaminated soils were the most (14)C-depleted biomarkers ever measured for an in situ environmental system, and this study demonstrated that the microbial community in this soil was subsisting primarily on petroleum hydrocarbons. In contrast, the microbial community in a nearby uncontaminated control soil maintained a more modern Delta(14)C signature than total organic carbon (Delta(14)C(PLFA) = +36 per thousand to -147 per thousand, Delta(14)C(TOC) = -148 per thousand), indicating preferential consumption of the most modern plant-derived fraction of soil organic carbon. Measurements of delta(13)C and Delta(14)C of soil CO(2) additionally demonstrated that mineralization of PHC contributed to soil CO(2) at the contaminated site. The CO(2) in the uncontaminated control soil exhibited substantially more modern Delta(14)C values, and lower soil CO(2) concentrations than the contaminated soils, suggesting increased rates of soil respiration in the contaminated soils. In combination, these results demonstrated that biodegradation in the soil microbial community was a primary pathway of petroleum hydrocarbon removal in the PEPS system. This study highlights the power of natural abundance radiocarbon for determining microbial carbon sources and identifying biodegradation pathways in complex remediation systems.
Assuntos
Bactérias/metabolismo , Carbono/análise , Ácidos Graxos/análise , Hidrocarbonetos/isolamento & purificação , Petróleo/análise , Fosfolipídeos/análise , Poluentes do Solo/isolamento & purificação , Biodegradação Ambiental , Dióxido de Carbono/análise , Isótopos de Carbono , Monitoramento Ambiental , Gases/análiseRESUMO
A model was developed to predict the concentrations of chlorinated ethenes and ethene during sequential reductive dechlorination of tetrachloroethene (PCE) from stable carbon isotope values using Rayleigh model principles and specified isotopic enrichment factors for each step of dechlorination. The model was tested using three separate datasets of concentration and isotope values measured during three experiments involving the degradation of PCE to vinyl chloride (VC), trichloroethene (TCE) to ethene, and cis-1,2-dichloroethene (cDCE) to ethene. The model was then coupled to a parameter estimation method to estimate values for the isotopic enrichment factors of TCE, cDCE, and VC when they are intermediates in the dechlorination to ethene. The enrichment factors estimated for TCE and cDCE when they were intermediates in biodegradation experiments were close to or within the published range of enrichment factors determined from experiments where TCE or cDCE were the initial substrates. In contrast, the enrichment factors determined by parameter estimation for experiments in which VC was an intermediate in biodegradation experiments were consistently more negative (by approximately 10 per thousandth) than the most negative published enrichment factor determined from experiments where VC was the initial substrate. This finding suggests that the range of enrichment factors for VC dechlorination may not be as narrow as previously suggested (-21.5 per thousandth to -26.6 per thousandth) and that fractionation during VC dechlorination when VC is an intermediate compound may be significantly larger than when VC is the initial substrate. These findings have important implications both for the current practice of extrapolating laboratory-derived isotopic enrichment factors to quantify biodegradation of chlorinated ethenes in the field and for understanding the details of enzymatic reductive dechlorination.
Assuntos
Isótopos de Carbono/análise , Cloro/metabolismo , Etilenos/metabolismo , Tetracloroetileno/metabolismo , Biodegradação Ambiental , Dicloroetilenos/metabolismo , Etilenos/química , Modelos Biológicos , Tricloroetileno/metabolismoRESUMO
Understanding microbial carbon sources is fundamental to elucidating the role of microbial communities in carbon cycling and in the biodegradation of organic contaminants. Because the majority of anthropogenic contaminants are either directly or indirectly derived from fossil fuels that are devoid of 14C, radiocarbon can be used as a natural inverse tracer of contaminant carbon in the contemporary environment. Here, 14C analysis of individual microbial phospholipid fatty acids (PLFA) was used to characterize the carbon sources utilized bythe active microbial community in salt marsh sediments contaminated by the Florida oil spill of 1969 in Wild Harbor, West Falmouth, MA. A specific goal was to determine whether this community is actively degrading petroleum residues that persist in these sediments. The delta14C values of microbial PLFA in all sediment horizons (contaminated and noncontaminated) matched the delta14C of the total sedimentary organic carbon after petroleum removal, indicating that no measurable metabolism of petroleum residues was occurring. This result agrees with ancillary data such as the delta13C content and distribution of PLFA, and the residual hydrocarbon composition determined by comprehensive two-dimensional gas chromatography (GCxGC) analysis. We hypothesize that microbes have chosen to respire the natural organic matter rather than the residual petroleum hydrocarbons because the former is more labile. Future efforts directed at determining indices of microbial degradation of petroleum hydrocarbons should consider competition with natural organic matter.