Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 194(8): 3840-51, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25754739

RESUMO

Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.


Assuntos
Movimento Celular/imunologia , Infecções por Chlamydophila/imunologia , Chlamydophila pneumoniae/imunologia , Mastócitos/imunologia , Pneumonia Bacteriana/imunologia , Animais , Antiasmáticos/farmacologia , Líquido da Lavagem Broncoalveolar , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Infecções por Chlamydophila/genética , Infecções por Chlamydophila/patologia , Cromolina Sódica/farmacologia , Humanos , Mastócitos/patologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Camundongos , Camundongos Transgênicos , Pneumonia Bacteriana/genética , Proteólise/efeitos dos fármacos , p-Metoxi-N-metilfenetilamina/farmacologia
2.
PLoS Pathog ; 5(4): e1000379, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360122

RESUMO

Here we investigated the role of the Nod/Rip2 pathway in host responses to Chlamydophila pneumoniae-induced pneumonia in mice. Rip2(-/-) mice infected with C. pneumoniae exhibited impaired iNOS expression and NO production, and delayed neutrophil recruitment to the lungs. Levels of IL-6 and IFN-gamma levels as well as KC and MIP-2 levels in bronchoalveolar lavage fluid (BALF) were significantly decreased in Rip2(-/-) mice compared to wild-type (WT) mice at day 3. Rip2(-/-) mice showed significant delay in bacterial clearance from the lungs and developed more severe and chronic lung inflammation that continued even on day 35 and led to increased mortality, whereas WT mice cleared the bacterial load, recovered from acute pneumonia, and survived. Both Nod1(-/-) and Nod2(-/-) mice also showed delayed bacterial clearance, suggesting that C. pneumoniae is recognized by both of these intracellular receptors. Bone marrow chimera experiments demonstrated that Rip2 in BM-derived cells rather than non-hematopoietic stromal cells played a key role in host responses in the lungs and clearance of C. pneumoniae. Furthermore, adoptive transfer of WT macrophages intratracheally was able to rescue the bacterial clearance defect in Rip2(-/-) mice. These results demonstrate that in addition to the TLR/MyD88 pathway, the Nod/Rip2 signaling pathway also plays a significant role in intracellular recognition, innate immune host responses, and ultimately has a decisive impact on clearance of C. pneumoniae from the lungs and survival of the infectious challenge.


Assuntos
Infecções por Chlamydophila/imunologia , Imunidade Inata , Proteínas Adaptadoras de Sinalização NOD/imunologia , Pneumonia Bacteriana/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Quimiocinas/imunologia , Quimiocinas/metabolismo , Infecções por Chlamydophila/metabolismo , Infecções por Chlamydophila/patologia , Chlamydophila pneumoniae/imunologia , Chlamydophila pneumoniae/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Proteínas Adaptadoras de Sinalização NOD/metabolismo , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia , RNA Mensageiro/análise , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
3.
Front Immunol ; 10: 754, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031755

RESUMO

Autophagy can either antagonize or promote intracellular bacterial growth, depending on the pathogen. Here, we investigated the role of autophagy during a pulmonary infection with the obligate intracellular pathogen, Chlamydia pneumoniae (CP). In mouse embryonic fibroblasts (MEFs) or macrophages, deficiency of autophagy pathway components led to enhanced CP replication, suggesting that autophagy exerts a bactericidal role. However, in vivo, mice with myeloid-specific deletion of the autophagic protein ATG16L1 suffered increased mortality during CP infection, neutrophilia, and increased inflammasome activation despite no change in bacterial burden. Induction of autophagy led to reduced CP replication in vitro, but impaired survival in CP-infected mice, associated with an initial reduction in IL-1ß production, followed by enhanced neutrophil recruitment, defective CP clearance, and later inflammasome activation and IL-1ß production, which drove the resulting mortality. Taken together, our data suggest that a delicate interplay exists between autophagy and inflammasome activation in determining the outcome of CP infection, perturbation of which can result in inflammatory pathology or unrestricted bacterial growth.


Assuntos
Autofagia , Infecções por Chlamydophila/metabolismo , Infecções por Chlamydophila/microbiologia , Chlamydophila pneumoniae/fisiologia , Inflamassomos/metabolismo , Animais , Biomarcadores , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Citometria de Fluxo , Técnicas de Inativação de Genes , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos
4.
Int J Antimicrob Agents ; 40(4): 354-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22819150

RESUMO

Salicylidene acylhydrazide compounds have been shown to inhibit bacterial pathogens, including Chlamydia and Neisseria gonorrhoeae. If such compounds could also target HIV-1, their potential use as topical microbicides to prevent sexually transmitted infections would be considerable. In this study, the in vitro anti-HIV-1 activity, cytotoxicity and mechanism of action of several salicylidene acylhydrazides were determined. Inhibitory activity was assessed using TZM-bl cells and primary peripheral blood mononuclear cells (PBMCs) as targets for HIV-1 infection. Antiviral activity was measured against cell-free and cell-associated virus and in vaginal fluid and semen simulants. Since the antibacterial activity of salicylidene acylhydrazides is reversible by Fe(2+), the ability of Fe(2+) and other cations to reverse the anti-HIV-1 activity of the compounds was determined. Real-time PCR was also employed to determine the stage affected in the HIV-1 replication cycle. Four compounds with 50% inhibitory concentrations against HIV-1 of 1-7 µM were identified. In vitro toxicity varied but was generally limited. Activity was similar against three R5 clade B primary isolates and whether the target for virus replication was TZM-bl cells or PBMCs. Compounds inhibited cell-free and cell-associated virus and were active in vaginal fluid and semen simulants. Fe(2+), but not other cations, reversed the anti-HIV-1 effect. Finally, the inhibitory effect of the compounds occurred at a post-integration step. In conclusion, salicylidene acylhydrazides were identified with in vitro anti-HIV-1 activity in the micromolar range. The activity of these compounds against other sexually transmitted pathogens makes them potential candidates to formulate for use as a broad-spectrum topical genital microbicide.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Hidrazinas/farmacologia , Bases de Schiff/farmacologia , Secreções Corporais/virologia , Células Cultivadas , Feminino , HIV-1/fisiologia , Humanos , Concentração Inibidora 50 , Masculino , Testes de Sensibilidade Microbiana , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA