Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Periodontol ; 51(2): 222-232, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38105008

RESUMO

AIM: The use of cannabis, which contains multiple antimicrobials, may be a risk factor for periodontitis. We hypothesized that multiple oral spirochetes would be phytocannabinoid-resistant and that cannabidiol (CBD) would act as an environmental stressor to which Treponema denticola would respond transcriptionally, thereby providing first insights into spirochetal survival strategies. MATERIALS AND METHODS: Oral spirochete growth was monitored spectrophotometrically in the presence and absence of physiologically relevant phytocannabinoid doses, the transcriptional response to phytocannabinoid exposure determined by RNAseq, specific gene activity fluxes verified using qRT-PCR and orthologues among fully sequenced oral spirochetes identified. RESULTS: Multiple strains of oral treponemes were resistant to CBD (0.1-10 µg/mL), while T. denticola ATCC 35405 was resistant to all phytocannabinoids tested (CBD, cannabinol [CBN], tetrahydrocannabinol [THC]). A total of 392 T. denticola ATCC 35405 genes were found to be CBD-responsive by RNAseq. A selected subset of these genes was independently verified by qRT-PCR. Genes found to be differentially activated by both methods included several involved in transcriptional regulation and toxin control. Suppressed genes included several involved in chemotaxis and proteolysis. CONCLUSIONS: Oral spirochetes, unlike some other periodontal bacteria, are resistant to physiological doses of phytocannabinoids. Investigation of CBD-induced transcriptomic changes provided insight into the resistance mechanisms of this important periodontal pathogen. These findings should be considered in the context of the reported enhanced susceptibility to periodontitis in cannabis users.


Assuntos
Canabidiol , Periodontite , Humanos , Canabidiol/farmacologia , Treponema denticola/genética , Treponema/genética , Spirochaetales/genética , Periodontite/genética , Periodontite/microbiologia , Canabinol , Perfilação da Expressão Gênica
2.
Biochem Biophys Res Commun ; 667: 127-131, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216828

RESUMO

Retinal pigment epithelial (RPE) cells contribute to several clinical conditions resulting in retinal fibrotic scars. Myofibroblast trans-differentiation of RPE cells is a critical step in the process of retinal fibrosis. In this study, we investigated the effects of N-oleoyl dopamine (OLDA), a newer endocannabinoid with a structure distinct from classic endocannabinoids, on TGF-ß2-induced myofibroblast trans-differentiation of porcine RPE cells. Using an in vitro collagen matrix contraction assay, OLDA was found to inhibit TGF-ß2 induced contraction of collagen matrices by porcine RPE cells. This effect was concentration-dependent, with significant inhibition of contraction observed at 3 µM and 10 µM. OLDA did not affect the proliferation of porcine RPE cells. Immunocytochemistry showed that at 3 µM, OLDA decreased incorporation of α-SMA in the stress fibers of TGF-ß2-treated RPE cells. In addition, western blot analysis showed that 3 µM OLDA significantly downregulated TGF-ß2-induced α-SMA protein expression. Taken together these results demonstrate that OLDA inhibits TGF-ß induced myofibroblast trans-differentiation of RPE cells. It has been established that classic endocannabinoid such as anandamide, by activating the CB1 cannabinoid receptor, promote fibrosis in multiple organ systems. In contrast, this study demonstrates that OLDA, an endocannabinoid with a chemical structure distinct from classic endocannabinoids, inhibits myofibroblast trans-differentiation, an important step in fibrosis. Unlike classic endocannabinoids, OLDA has weak affinity for the CB1 receptor. Instead, OLDA acts on non-classic cannabinoid receptors such as GPR119, GPR6, and TRPV1. Therefore, our study indicates that the newer endocannabinoid OLDA and its non-classic cannabinoid receptors could potentially be novel therapeutic targets for treating ocular diseases involving retinal fibrosis and fibrotic pathologies in other organ systems.


Assuntos
Endocanabinoides , Epitélio Pigmentado da Retina , Animais , Suínos , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Dopamina/farmacologia , Dopamina/metabolismo , Miofibroblastos/metabolismo , Colágeno/metabolismo , Fibrose , Células Epiteliais/metabolismo , Receptores de Canabinoides/metabolismo , Transdiferenciação Celular , Pigmentos da Retina/metabolismo
3.
Cell Physiol Biochem ; 55(S5): 1-14, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33984199

RESUMO

Cannabidiol (CBD), the major non-intoxicating constituent of Cannabis sativa, has gained recent attention due to its putative therapeutic uses for a wide variety of diseases. CBD was discovered in the 1940s and its structure fully characterized in the 1960s. However, for many years most research efforts related to cannabis derived chemicals have focused on D9-tetrahydrocannabinol (THC). In contrast to THC, the lack of intoxicating psychoactivity associated with CBD highlights the potential of this cannabinoid for clinical drug development. This review details in vitro and in vivo studies of CBD related to the eye, the therapeutic potential of cannabidiol for various ocular conditions, and molecular targets and mechanisms for CBD-induced ocular effects. In addition, challenges of CBD applications for clinical ocular therapeutics and future directions are discussed.


Assuntos
Canabidiol/metabolismo , Animais , Cannabis/química , Dronabinol/metabolismo , Humanos , Transdução de Sinais/fisiologia
4.
Biomedicines ; 10(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009504

RESUMO

Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.

5.
J Comp Neurol ; 528(8): 1392-1422, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31749162

RESUMO

The present study examines cortical neuronal morphology in the African lion (Panthera leo leo), African leopard (Panthera pardus pardus), and cheetah (Acinonyx jubatus jubatus). Tissue samples were removed from prefrontal, primary motor, and primary visual cortices and investigated with a Golgi stain and computer-assisted morphometry to provide somatodendritic measures of 652 neurons. Although neurons in the African lion were insufficiently impregnated for accurate quantitative dendritic measurements, descriptions of neuronal morphologies were still possible. Qualitatively, the range of spiny and aspiny neurons across the three species was similar to those observed in other felids, with typical pyramidal neurons being the most prominent neuronal type. Quantitatively, somatodendritic measures of typical pyramidal neurons in the cheetah were generally larger than in the African leopard, despite similar brain sizes. A MARsplines analysis of dendritic measures correctly differentiated 87.4% of complete typical pyramidal neurons between the African leopard and cheetah. In addition, unbiased stereology was used to compare the soma size of typical pyramidal neurons (n = 2,238) across all three cortical regions and gigantopyramidal neurons (n = 1,189) in primary motor and primary visual cortices. Both morphological and stereological analyses indicated that primary motor gigantopyramidal neurons were exceptionally large across all three felids compared to other carnivores, possibly due to specializations related to the felid musculoskeletal systems. The large size of these neurons in the cheetah which, unlike lions and leopards, does not belong to the Panthera genus, suggests that exceptionally enlarged primary motor gigantopyramidal neurons evolved independently in these felid species.


Assuntos
Acinonyx/anatomia & histologia , Leões/anatomia & histologia , Neocórtex/anatomia & histologia , Neocórtex/citologia , Panthera/anatomia & histologia , Animais , Felidae/anatomia & histologia , Feminino , Masculino , Neocórtex/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA