Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Therm Biol ; 122: 103877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38850622

RESUMO

The objective of the study was to examine the lower limbs skin temperature (TSK) changes in response to exhaustive whole-body exercise in trained individuals in reference to changes in plasma adenosine triphosphate (ATP). Eighteen trained participants from distinct sport type ‒ endurance (25.2 ± 4.9 yr) and speed-power (25.8 ± 3.1 yr), and 9 controls (24,9 ± 4,3 yr) ‒ were examined. Lower limbs TSK and plasma ATP measures were applied in parallel in response to incremental treadmill test and during 30-min recovery period. Plasma ATP kinetics were inversely associated to changes in TSK. The first significant decrease in TSK (76-89% of V˙ O2MAX) occurred shortly before a significant plasma ATP increase (86-97% of V˙ O2MAX). During recovery, TSK increased, reaching pre-exercise values (before exercise vs. after 30-min recovery: 31.6 ± 0.4 °C vs. 32.0 ± 0.8 °C, p = 0.855 in endurance; 32.4 ± 0.5 °C vs. 32.9 ± 0.5 °C, p = 0.061 in speed-power; 31.9 ± 0.7 °C vs. 32.4 ± 0.8 °C, p = 0.222 in controls). Plasma ATP concentration did not returned to pre-exercise values in well trained participants (before exercise vs. after 30-min recovery: 699 ± 57 nmol l-1 vs. 854 ± 31 nmol l-1, p < 0.001, η2 = 0.961 and 812 ± 35 nmol l-1 vs. 975 ± 55 nmol l-1, p < 0.001, η2 = 0.974 in endurance and speed-power, respectively), unlike in controls (651 ± 40 nmol l-1 vs. 687 ± 61 nmol·l-1, p = 0.58, η2 = 0.918). The magnitude of TSK and plasma ATP response differed between the groups (p < 0.001, η2 = 0.410 for TSK; p < 0.001, η2 = 0.833 for plasma ATP). We conclude that lower limbs TSK change indirectly corresponds to the reverse course of plasma ATP during incremental exercise and the magnitude of the response depends on the level of physical activity and the associated to it long-term metabolic adaptation.


Assuntos
Trifosfato de Adenosina , Exercício Físico , Extremidade Inferior , Temperatura Cutânea , Humanos , Masculino , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/metabolismo , Adulto , Exercício Físico/fisiologia , Extremidade Inferior/fisiologia , Extremidade Inferior/irrigação sanguínea , Adulto Jovem , Feminino , Resistência Física
2.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397036

RESUMO

Nicotinamide (NA) derivatives play crucial roles in various biological processes, such as inflammation, regulation of the cell cycle, and DNA repair. Recently, we proposed that 4-pyridone-3-carboxamide-1-ß-D-ribonucleoside (4PYR), an unusual derivative of NA, could be classified as an oncometabolite in bladder, breast, and lung cancer. In this study, we investigated the relations between NA metabolism and the progression, recurrence, metastasis, and survival of patients diagnosed with different histological subtypes of renal cell carcinoma (RCC). We identified alterations in plasma NA metabolism, particularly in the clear cell RCC (ccRCC) subtype, compared to papillary RCC, chromophobe RCC, and oncocytoma. Patients with ccRCC also exhibited larger tumor sizes and elevated levels of diagnostic serum biomarkers, such as hsCRP concentration and ALP activity, which were positively correlated with the plasma 4PYR. Notably, 4PYR levels were elevated in advanced stages of ccRCC cancer and were associated with a highly aggressive phenotype of ccRCC. Additionally, elevated concentrations of 4PYR were related to a higher likelihood of mortality, recurrence, and particularly metastasis in ccRCC. These findings are consistent with other studies, suggesting that NA metabolism is accelerated in RCC, leading to abnormal concentrations of 4PYR. This supports the concept of 4PYR as an oncometabolite and a potential prognostic factor in the ccRCC subtype.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Piridonas , Ribonucleosídeos , Humanos , Nucleosídeos/metabolismo , Niacinamida
3.
BMC Cancer ; 23(1): 433, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173619

RESUMO

BACKGROUND: Breast cancer is associated with alterations in lipid metabolism. The treatment of breast cancer can also affect serum lipid composition. The purpose of this study was the examination of serum fatty acids (FAs) profiles in breast cancer survivors to assess if the FA levels normalize. METHODS: Serum levels of FAs were determined by gas chromatography-mass spectrometry in a group of breast cancer patients at baseline (before treatment, n = 28), at two follow-up visits at 12 months (n = 27) and 24 months (n = 19) after the breast cancer resection, and in the group of healthy controls (n = 25). Multivariate analysis was performed to assess how FA serum profile changes following treatment. RESULTS: Breast cancer patients' serum FA profiles at follow-ups did not normalize to the levels of control group. The greatest differences were found for levels of branched-chain (BCFA), odd-chain (OCFA) and polyunsaturated (PUFAs) FAs, all of which were significantly increased 12 months after the surgery. CONCLUSIONS: After treatment for breast cancer, the patients' serum FA profile differs from the profile before treatment and from controls, especially 12 months after treatment. Some changes may be beneficial - increased BCFA and OCFA levels, and improved n-6/n-3 PUFA ratio. This may reflect lifestyle changes in breast cancer survivors and have an impact on the risk of recurrence.


Assuntos
Neoplasias da Mama , Ácidos Graxos , Humanos , Feminino , Ácidos Graxos/metabolismo , Neoplasias da Mama/terapia
4.
Curr Issues Mol Biol ; 44(10): 4877-4887, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36286046

RESUMO

RNS60 is a physically modified saline solution hypothesized to contain oxygen nanobubbles. It has been reported to reduce ischemia/reperfusion injury in a pig model of acute myocardial infarction. We investigated the effects of RNS60 during cardiac hypoxia in mice and as an additive to cardioplegic solution in rat hearts. ApoE-/-LDLr-/- mice were treated by intravenous injection of RNS60 or saline as a control while monitoring the ECG and post-hypoxic serum release of troponin T and creatine kinase activity. Hearts infused with Custodiol containing 10% RNS60 or saline as the control were subjected to 4 h of 4 °C preservation, followed by an assessment of myocardial metabolites, purine release, and mechanical function. RNS60 attenuated changes in the ECG STU area during hypoxia, while the troponin T concentration and creatine kinase activity were significantly higher in the serum of the controls. During reperfusion after 4 h of cold ischemia, the Custodiol/RNS60-treated hearts had about 30% lower LVEDP and better dp/dtmax and dp/dtmin together with a decreased release of purine catabolites vs. the controls. The myocardial ATP, total adenine nucleotides, and phosphocreatine concentrations were higher in the RNS60-treated hearts. This study indicates that RNS60 enhances cardioprotection in experimental myocardial hypoxia and under conditions of cardioplegic arrest. Improved cardiac energetics are involved in the protective effect, but complete elucidation of the mechanism requires further study.

5.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628582

RESUMO

The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-ß-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.


Assuntos
Neoplasias da Mama , Ribonucleosídeos , Animais , Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Camundongos , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Piridonas , Ribonucleosídeos/farmacologia
6.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077285

RESUMO

LVAD therapy is an effective rescue in acute and especially chronic cardiac failure. In several scenarios, it provides a platform for regeneration and sustained myocardial recovery. While unloading seems to be a key element, pharmacotherapy may provide powerful tools to enhance effective cardiac regeneration. The synergy between LVAD support and medical agents may ensure satisfying outcomes on cardiomyocyte recovery followed by improved quality and quantity of patient life. This review summarizes the previous and contemporary strategies for combining LVAD with pharmacotherapy and proposes new therapeutic targets. Regulation of metabolic pathways, enhancing mitochondrial biogenesis and function, immunomodulating treatment, and stem-cell therapies represent therapeutic areas that require further experimental and clinical studies on their effectiveness in combination with mechanical unloading.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232794

RESUMO

Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr-/-) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates' pool in the hearts of 6-month Ldlr-/- mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr-/- vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr-/- mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.


Assuntos
Adenosina Desaminase , Hiperlipidemias , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Citrato (si)-Sintase , Guanosina , Hiperlipidemias/metabolismo , Lipoproteínas LDL , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Fator 1 Nuclear Respiratório , Nucleotídeos/metabolismo
8.
J Cell Mol Med ; 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142751

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide-dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD+ and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5'-nucleotidase knockout mice (CD73-/-). Human non-stenotic valves (n = 10) actively converted NAD+ and NMN via both CD73 and NAD+ -glycohydrolase (CD38) according to our analysis with RP-HPLC and immunofluorescence. In stenotic valves (n = 50), due to reduced CD73 activity, NAD+ was degraded predominantly by CD38 and additionally by ALP and eNPP1. CAVD patients had significantly higher hydrolytic rates of NAD+ (0.81 ± 0.07 vs 0.56 ± 0.10) and NMN (1.12 ± 0.10 vs 0.71 ± 0.08 nmol/min/cm2 ) compared with controls. CD38 was also primarily engaged in human vascular NAD+ metabolism. Studies using specific ecto-enzyme inhibitors and CD73-/- mice confirmed that CD73 is not the only enzyme involved in NAD+ and NMN hydrolysis and that CD38 had a significant contribution to these pathways. Modifications of extracellular NAD+ and NMN metabolism in aortic valve cells may be particularly important in valve pathology and could be a potential therapeutic target.

9.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207177

RESUMO

Huntington's disease (HD) is a multi-system disorder that is caused by expanded CAG repeats within the exon-1 of the huntingtin (HTT) gene that translate to the polyglutamine stretch in the HTT protein. HTT interacts with the proteins involved in gene transcription, endocytosis, and metabolism. HTT may also directly or indirectly affect purine metabolism and signaling. We aimed to review existing data and discuss the modulation of the purinergic system as a new therapeutic target in HD. Impaired intracellular nucleotide metabolism in the HD affected system (CNS, skeletal muscle and heart) may lead to extracellular accumulation of purine metabolites, its unusual catabolism, and modulation of purinergic signaling. The mechanisms of observed changes might be different in affected systems. Based on collected findings, compounds leading to purine and ATP pool reconstruction as well as purinergic receptor activity modulators, i.e., P2X7 receptor antagonists, may be applied for HD treatment.


Assuntos
Doença de Huntington/metabolismo , Nucleotídeos de Purina/metabolismo , Transdução de Sinais , AMP Desaminase/antagonistas & inibidores , AMP Desaminase/metabolismo , Animais , Inibidores Enzimáticos/uso terapêutico , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Fármacos Neuroprotetores/uso terapêutico
10.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830135

RESUMO

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.


Assuntos
Dislipidemias/fisiopatologia , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Força Muscular/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Glicemia/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Ácidos Graxos/sangue , Resistência à Insulina/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Oxirredução/efeitos dos fármacos , Ranolazina/farmacologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Troponina/metabolismo
11.
Int J Mol Sci ; 22(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916440

RESUMO

Several lines of evidence suggest that altered adenosine deaminase (ADA) activity, especially its ADA2 iso-enzyme, is associated with malignant breast cancer (BC) development. Triple-negative breast cancer (TNBC) is currently the most challenging BC subtype due to its metastatic potential and recurrence. Herein, we analyzed the sources of ADA iso-enzymes in TNBC by investigating the effects of cell-to-cell interactions between TNBC cells, macrophages, lymphocytes, and endothelial cells. We also examined the potential relationship between ADA activity and cancer progression in TNBC patients. In vitro analyses demonstrated that the interactions of immune and endothelial cells with MDA-MB-231 triple negative BC cells modulated their extracellular adenosine metabolism pattern. However, they caused an increase in the ADA1 activity, and did not alter ADA2 activity in cancer cells. In turn, the co-culture of MDA-MB-231 cells with THP-1 monocyte/macrophages, Jurkat cells, and human lung microvascular endothelial cells (HULEC) caused the increase in ADA2 activity on THP-1 cells and ADA1 activity on Jurkat cells and HULEC. Clinical sample analysis revealed that TNBC patients had higher plasma ADA2 activities and lower ADA1/ADA2 ratio at advanced stages of cancer development than in the initial stages, while patients with hormone receptor positive, HER2 negative (HR+HER2-), and triple positive (HR+HER2+) breast cancers at the same stages showed opposite trends. TNBC patients also demonstrated positive associations between plasma ADA2 activity and pro-tumor M2 macrophage markers, as well as between ADA1 activity and endothelial dysfunction or inflammatory parameters. The analysis of TNBC patients, at 6 and 12 months following cancer treatment, did not showed significant changes in plasma ADA activities and macrophage polarization markers, which may be the cause of their therapeutic failure. We conclude that alterations in both ADA iso-enzymes can play a role in breast cancer development and progression by the modulation of extracellular adenosine-dependent pathways. Additionally, the changes in ADA2 activity that may contribute to the differentiation of macrophages into unfavorable pro-tumor M2 phenotype deserve special attention in TNBC.


Assuntos
Adenosina Desaminase/sangue , Biomarcadores Tumorais/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Macrófagos/enzimologia , Neoplasias de Mama Triplo Negativas/sangue , Adulto , Feminino , Humanos , Células Jurkat , Macrófagos/patologia , Pessoa de Meia-Idade , Células THP-1 , Neoplasias de Mama Triplo Negativas/patologia
12.
J Strength Cond Res ; 34(2): 355-364, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31469767

RESUMO

Wlodarczyk, M, Kusy, K, Slominska, E, Krasinski, Z, and Zielinski, J. Change in lactate, ammonia, and hypoxanthine concentrations in a 1-year training cycle in highly trained athletes: applying biomarkers as tools to assess training status. J Strength Cond Res 34(2): 355-364, 2020-The aim was to determine changes in biomarker (LA, NH3, purine metabolites) blood concentration during graded exercise and recovery throughout an annual training cycle in highly trained athletes of different training profiles. The study included 12 sprinters (SP, 21-30 years), 11 triathletes (TR, 20-31 years), 12 futsal players (FU, 19-31 years), and 13 amateur runners (AM, 20-33 years). Purine metabolite (hypoxanthine, xanthine, uric acid), ammonia (NH3), and lactate (LA) concentrations were determined at rest, during an incremental treadmill exercise test (every 3 minutes), and during recovery (5, 10, 15, 20, and 30 minutes postexercise) in 4 phases of an annual training cycle. Purine metabolite concentration was determined from plasma, whereas LA and NH3 from whole blood. For LA during exercise and recovery, certain significant differences between training phases within groups were observed for FU, TR, and SP but not for AM. For NH3, the greatest differences between examination points were observed for SP and TR near maximal exercise and in the first few stages of recovery. For hypoxanthine (Hx), the largest amount of differences between examination points was observed for FU, TR, and FU throughout the entire exercise spectrum. Biomarker concentration dynamics change during an incremental exercise test and postexercise in an annual training cycle. Biomarker responses differ depending on training type and magnitude of training loads used in various phases of an annual training cycle. When assessing training status using an incremental exercise test throughout an annual training cycle, NH3 and Hx concentration changes are more sensitive compared with LA.


Assuntos
Amônia/sangue , Atletas , Hipoxantina/sangue , Ácido Láctico/sangue , Condicionamento Físico Humano , Aptidão Física , Adulto , Biomarcadores/sangue , Teste de Esforço , Humanos , Masculino , Ácido Úrico/sangue , Xantina/sangue , Adulto Jovem
13.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053898

RESUMO

Adenosine deaminase (ADA) is an enzyme of purine metabolism that irreversibly converts adenosine to inosine or 2'deoxyadenosine to 2'deoxyinosine. ADA is active both inside the cell and on the cell surface where it was found to interact with membrane proteins, such as CD26 and adenosine receptors, forming ecto-ADA (eADA). In addition to adenosine uptake, the activity of eADA is an essential mechanism that terminates adenosine signaling. This is particularly important in cardiovascular system, where adenosine protects against endothelial dysfunction, vascular inflammation, or thrombosis. Besides enzymatic function, ADA protein mediates cell-to-cell interactions involved in lymphocyte co-stimulation or endothelial activation. Furthermore, alteration in ADA activity was demonstrated in many cardiovascular pathologies such as atherosclerosis, myocardial ischemia-reperfusion injury, hypertension, thrombosis, or diabetes. Modulation of ADA activity could be an important therapeutic target. This work provides a systematic review of ADA activity and anchoring inhibitors as well as summarizes the perspectives of their therapeutic use in cardiovascular pathologies associated with increased activity of ADA.


Assuntos
Inibidores de Adenosina Desaminase/uso terapêutico , Animais , Descoberta de Drogas/métodos , Proteínas de Choque Térmico/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Água/química
14.
J Mol Cell Cardiol ; 128: 62-76, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30641086

RESUMO

Vascular inflammation is an important factor in the pathophysiology of cardiovascular diseases, such as atherosclerosis. Changes in the extracellular nucleotide and in particular adenosine catabolism may alter a chronic inflammation and endothelial activation. This study aimed to evaluate the relation between vascular ecto-adenosine deaminase (eADA) activity and endothelial activation in humans and to analyze the effects of LPS-mediated inflammation on this activity as well as mechanisms of its increase. Moreover, we investigated a therapeutic potential of ADA inhibition by deoxycofromycin (dCF) for endothelial activation. We demonstrated a positive correlation of vascular eADA activity and ADA1 mRNA expression with endothelial activation parameters in humans with atherosclerosis. The activation of vascular eADA was also observed under LPS stimulation in vivo along with endothelial activation, an increase in markers of inflammation and alterations in the lipid profile of a rat model. Ex vivo and in vitro studies on human specimen demonstrated that at an early stage of vascular pathology, eADA activity originated from activated endothelial cells, while at later stages also from an inflammatory infiltrate. We proposed that LPS-stimulated increase in endothelial adenosine deaminase activity could be a result of IL-6/JAK/STAT pathway activation, since the lack of IL-6 in mice was associated with lower vascular and plasma eADA activities. Furthermore, the inhibitors of JAK/STAT pathway decreased LPS-stimulated adenosine deaminase activity in endothelial cells. We demonstrated that cell surface eADA activity could be additionally regulated by transcytosis pathways, as exocytosis inhibitors including lipid raft inhibitor, methyl-ß-cyclodextrin decreased LPS-induced eADA activity. This suggests that cholesterol-dependent protein externalization mediated by lipid rafts could be an important factor in the eADA increase. Moreover, endocytosis inhibitors and exocytosis activators increased this activity on the cell surface. Furthermore, the inhibition of adenosine deaminase in endothelial cells in vitro attenuated LPS-mediated IL-6 release and soluble ICAM-1 and VCAM-1 concentration in the incubation medium through the restoration of the extracellular adenosine pool and adenosine receptor-dependent pathways. This study demonstrated that the vascular endothelial eADA activity remains under control of inflammatory mediators acting through JAK/STAT pathway that could be further modified by dyslipidemic-dependent exocytosis and transcytosis pathways. Inhibition of eADA blocked endothelial activation suggesting a crucial role of this enzyme in the control of vascular inflammation. This supports the concept of eADA targeted vascular protection therapy.


Assuntos
Adenosina Desaminase/genética , Aorta/metabolismo , Aterosclerose/genética , Inflamação/genética , Adenosina/genética , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/patologia , Membrana Celular/efeitos dos fármacos , Colesterol/genética , Colesterol/metabolismo , Células Endoteliais/enzimologia , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Inflamação/enzimologia , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Interleucina-6/genética , Janus Quinases/genética , Lipopolissacarídeos/farmacologia , Metabolismo/genética , Camundongos , Pentostatina/farmacologia , Ratos , Fatores de Transcrição STAT/genética , Molécula 1 de Adesão de Célula Vascular/genética
15.
J Strength Cond Res ; 33(5): 1192-1200, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30908377

RESUMO

Wlodarczyk, M, Kusy, K, Slominska, E, Krasinski, Z, and Zielinski, J. Changes in blood concentration of adenosine triphosphate metabolism biomarkers during incremental exercise in highly trained athletes of different sport specializations. J Strength Cond Res 33(5): 1192-1200, 2019-We hypothesized that (a) high-level specialized sport training causes different adaptations that induce specific biomarker release dynamics during exercise and recovery and (b) skeletal muscle mass affects biomarker release. Eleven sprinters (21-30 years), 16 endurance runners (18-31 years), 12 futsal players (18-29 years), and 12 amateur runners as controls (22-33 years) were examined. Hypoxanthine (Hx), xanthine (X), uric acid (UA), ammonia (NH3), and lactate (LA) concentrations were determined at rest, during an incremental treadmill exercise test (every 3 minutes), and during recovery (5, 10, 15, 20, and 30 minutes after exercise). Hx, X, and UA concentration was determined from plasma, while LA and NH3 from whole blood, and muscle mass was assessed using dual X-ray absorptiometry method. At rest, during incremental exercise, and up to 30 minutes into the postexercise recovery period, sprinters had lowest Hx, X, and UA concentrations, and endurance athletes had lowest NH3 concentrations. For LA during exercise, the lowest concentrations were noted in endurance athletes, except when reaching maximum intensity, where the differences between groups were not significant. There were no significant correlations observed between skeletal muscle mass and biomarker concentration at maximal intensity and recovery in any group. In conclusion, the magnitude of exercise-induced biomarker concentration is only related to training adaptations through specific training profile but not to muscle mass. In addition, the results suggest that combined measuring of LA, NH3, and Hx concentration in blood is useful in indirectly reflecting key changes in exercise- and training-induced energy status. Further research should focus on studying how specific training sessions affect individual biomarker response in highly trained athletes.


Assuntos
Amônia/sangue , Hipoxantina/sangue , Ácido Láctico/sangue , Músculo Esquelético/anatomia & histologia , Corrida/fisiologia , Ácido Úrico/sangue , Xantina/sangue , Absorciometria de Fóton , Adaptação Fisiológica/fisiologia , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Biomarcadores/sangue , Teste de Esforço , Humanos , Músculo Esquelético/diagnóstico por imagem , Tamanho do Órgão , Aptidão Física/fisiologia , Adulto Jovem
16.
J Cell Mol Med ; 22(12): 5939-5954, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291675

RESUMO

The activity of a cell-surface ecto-adenosine deaminase (eADA) is markedly increased in the endothelial activation and vascular inflammation leading to decreased adenosine concentration and alterations in adenosine signalling. Depending on the specific pathway activated, extracellular purines mediate host cell response or regulate growth and cytotoxicity on tumour cells. The aim of this study was to test the effects of adenosine deaminase inhibition by 2'deoxycoformycin (dCF) on the breast cancer development. dCF treatment decreased a tumour growth and a final tumour mass in female BALB/c mice injected orthotopically with 4T1 cancer cells. dCF also counteracted cancer-induced endothelial dysfunction in orthotopic and intravenous 4T1 mouse breast cancer models. In turn, this low dCF dose had a minor effect on immune stimulation exerted by 4T1 cell implantation. In vitro studies revealed that dCF suppressed migration and invasion of 4T1 cells via A2a and A3 adenosine receptor activation as well as 4T1 cell adhesion and transmigration through the endothelial cell layer via A2a receptor stimulation. Similar effects of dCF were observed in human breast cancer cells. Moreover, dCF improved a barrier function of endothelial cells decreasing its permeability. This study highlights beneficial effects of adenosine deaminase inhibition on breast cancer development. The inhibition of adenosine deaminase activity by dCF reduced tumour size that was closely related to the decreased aggressiveness of tumour cells by adenosine receptor-dependent mechanisms and endothelial protection.


Assuntos
Inibidores de Adenosina Desaminase/farmacologia , Progressão da Doença , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Receptores Purinérgicos P1/metabolismo , Adenosina Desaminase/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Espaço Extracelular/metabolismo , Feminino , Humanos , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/irrigação sanguínea , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Nucleotídeos/sangue , Pentostatina/farmacologia , Fenótipo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
17.
Biochim Biophys Acta ; 1862(11): 2147-2157, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27568644

RESUMO

Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings.

18.
Respir Res ; 17(1): 108, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581040

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with inflammatory response but it is unknown whether it is associated with alterations in NNMT activity and MNA plasma concentration. Here we examined changes in NNMT-MNA pathway in PAH in rats and humans. METHODS: PAH in rats was induced by a single subcutaneous injection of MCT (60 mg/kg). Changes in NNMT activity in the lungs and liver (assessed as the rate of conversion of nicotinamide (NA) to MNA), changes in plasma concentration of MNA and its metabolites (analyzed by LC/MS) were analyzed in relation to PAH progression. PAH was characterized by right ventricular hypertrophy (gross morphology), cardiac dysfunction (by MRI), lung histopathology, lung ultrastructure, and ET-1 concentration in plasma. NO-dependent and PGI2-dependent function in isolated lungs was analyzed. In naive patients with idiopathic pulmonary hypertension (IPAH) characterized by hemodynamic and biochemical parameters MNA and its metabolites in plasma were also measured. RESULTS: MCT-injected rats developed hypertrophy and functional impairment of the right ventricle, hypertrophy of the pulmonary arteries, endothelial ultrastructural defects and a progressive increase in ET-1 plasma concentration-findings all consistent with PAH development. In isolated lung, NO-dependent regulation of hypoxic pulmonary vasoconstriction was impaired, while PGI2 production (6-keto-PGF1α) was increased. NNMT activity increased progressively in the liver and in the lungs following MCT injection, and NNMT response was associated with an increase in MNA and 6-keto-PGF1α concentration in plasma. In IPAH patients plasma concentration of MNA was elevated as compared with healthy controls. CONCLUSIONS: Progression of pulmonary hypertension is associated with the activation of the NNMT-MNA pathway in rats and humans. Given the vasoprotective activity of exogenous MNA, which was previously ascribed to PGI2 release, the activation of the endogenous NNMT-MNA pathway may play a compensatory role in PAH.


Assuntos
Hipertensão Pulmonar/enzimologia , Pulmão/enzimologia , Niacinamida/análogos & derivados , Nicotinamida N-Metiltransferase/metabolismo , Transdução de Sinais , 6-Cetoprostaglandina F1 alfa/sangue , Adulto , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Progressão da Doença , Endotelina-1/sangue , Epoprostenol/metabolismo , Feminino , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Fígado/enzimologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Monocrotalina , Niacinamida/sangue , Niacinamida/metabolismo , Óxido Nítrico/metabolismo , Ratos Wistar , Fatores de Tempo , Disfunção Ventricular Direita/enzimologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita
19.
Cardiovasc Drugs Ther ; 28(2): 183-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24431031

RESUMO

Nucleotide metabolism and signalling is directly linked to myocardial function. Therefore analysis how diversity of genes coding nucleotide metabolism related proteins affects clinical progress of heart disease could provide valuable information for development of new treatments. Several studies identified that polymorphism of AMP deaminase 1 gene (AMPD1), in particular the common C34T variant of this gene was found to benefit patients with heart failure and ischemic heart disease. However, these findings were inconsistent in subsequent studies. This prompted our detailed analysis of heart transplant recipients that revealed diverse effect: improved early postoperative cardiac function associated with C34T mutation in donors, but worse 1-year survival. Our other studies on the metabolic impact of AMPD1 C34T mutation revealed decrease in AMPD activity, increased production of adenosine and de-inhibition of AMP regulated protein kinase. Thus, genetic, clinical and biochemical studies revealed that while long term attenuation of AMPD activity could be deleterious, transient inhibition of AMPD activity before acute cardiac injury is protective. We suggest therefore that pharmacological inhibition of AMP deaminase before transient ischemic event such as during ischemic heart disease or cardiac surgery could provide therapeutic benefit.


Assuntos
AMP Desaminase/genética , Predisposição Genética para Doença/genética , Cardiopatias/genética , Polimorfismo Genético/genética , Humanos
20.
Cell Mol Biol Lett ; 18(2): 249-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23605997

RESUMO

The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.


Assuntos
Apoptose , Modelos Biológicos , Western Blotting , Caspase 9/metabolismo , Forma Celular , Citocromos c/metabolismo , Fragmentação do DNA , Ativação Enzimática , Humanos , Linfoma Difuso de Grandes Células B/patologia , Mitocôndrias/metabolismo , Transdução de Sinais , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA