Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 24(55): 14742-14749, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969516

RESUMO

Heterogeneous catalysts based on materials with permanent porosity are of great interest owing to their high specific surface area, easy separation, recovery, and recycling ability. Additionally, porous polymer catalysts (PPCs) allow us to tune catalytic activity by introducing various functional centres. This study reports the preparation of PPCs with a permanent micro/mesoporous texture and a specific surface area SBET of up to 1000 m2 g-1 active in acid-catalyzed reactions, namely aldehyde and ketone acetalization and carboxylic acid esterification. These PPC-type conjugated hyper-cross-linked polyarylacetylene networks were prepared by chain-growth homopolymerization of 1,4-diethynylbenzene, 1,3,5-triethynylbenzene and tetrakis(4-ethynylphenyl)methane. However, only some ethynyl groups of the monomers (from 58 to 80 %) were polymerized into the polyacetylene network segments while the other ethynyl groups remained unreacted. Depending on the number of ethynyl groups per monomer molecule and the covalent structure of the monomer, PPCs were decorated with unreacted ethynyl groups from 3.2 to 6.7 mmol g-1 . The hydrogen atoms of the unreacted ethynyl groups served as acid catalytic centres of the aforementioned organic reactions. To the best of our knowledge, this is first study describing the high activity of hydrogen atoms of ethynyl groups in acid-catalyzed reactions.

2.
Macromol Rapid Commun ; 33(2): 158-63, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106002

RESUMO

Microporous organic polymers (MOP) of a new type have been synthesised in high yields by a simple coordination polymerization of 1,3-diethynylbenzene, 1,4-diethynylbenzene and 4,4'-diethynylbiphenyl catalysed by [Rh(cod)acac] and [Rh(nbd)acac] complexes. The new MOPs are non-swellable polyacetylene-type conjugated networks consisting of ethynylaryl-substituted polyene main chains that are crosslinked by arylene linkers. Prepared MOP samples have a mole fraction of branching units (by (13)C CP/MAS NMR) from 0.30 to 0.47 and exhibit the BET (Brunaer-Emmett-Teller) surface up to 809 m(2) g(-1) and hydrogen uptake up to 0.69 wt% (77 K, H2 pressure 750 torr).


Assuntos
Acetileno/análogos & derivados , Derivados de Benzeno/química , Hidrogênio/química , Poli-Inos/química , Acetileno/química , Catálise , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA