Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(8): 1300-1312, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37439496

RESUMO

Each year, publicly available databases are updated with new compounds from different research institutions. Positive experimental outcomes are more likely to be reported; therefore, they account for a considerable fraction of these entries. Established publicly available databases such as ChEMBL allow researchers to use information without constrictions and create predictive tools for a broad spectrum of applications in the field of toxicology. Therefore, we investigated the distribution of positive and nonpositive entries within ChEMBL for a set of off-targets and its impact on the performance of classification models when applied to pharmaceutical industry data sets. Results indicate that models trained on publicly available data tend to overpredict positives, and models based on industry data sets predict negatives more often than those built using publicly available data sets. This is strengthened even further by the visualization of the prediction space for a set of 10,000 compounds, which makes it possible to identify regions in the chemical space where predictions converge. Finally, we highlight the utilization of these models for consensus modeling for potential adverse events prediction.


Assuntos
Aprendizado de Máquina , Bases de Dados Factuais
2.
Drug Discov Today ; 28(12): 103820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935330

RESUMO

Data availability, data security, and privacy concerns often hamper optimal performance efficiency of machine learning (ML) techniques. Therefore, novel techniques for the utilization of private/sensitive data in the field of drug discovery have been proposed for ML model-building tasks. Some examples of the different techniques are secure multiparty computation, distributed deep learning, homomorphic encryption, blockchain-based peer-to-peer networking, differential privacy, and federated learning, as well as combinations of such techniques. In this paper, we present an overview of these techniques for decentralized ML to illustrate its benefits and drawbacks in the field of drug discovery.


Assuntos
Descoberta de Drogas , Privacidade , Aprendizado de Máquina
3.
J Cheminform ; 14(1): 54, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964049

RESUMO

Machine learning (ML) models require an extensive, user-driven selection of molecular descriptors in order to learn from chemical structures to predict actives and inactives with a high reliability. In addition, privacy concerns often restrict the access to sufficient data, leading to models with a narrow chemical space. Therefore, we propose a framework of re-trainable models that can be transferred from one local instance to another, and further allow a less extensive descriptor selection. The models are shared via a Jupyter Notebook, allowing the evaluation and implementation of a broader chemical space by keeping most of the tunable parameters pre-defined. This enables the models to be updated in a decentralized, facile, and fast manner. Herein, the method was evaluated with six transporter datasets (BCRP, BSEP, OATP1B1, OATP1B3, MRP3, P-gp), which revealed the general applicability of this approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA