Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 140(12): 2576-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23715550

RESUMO

Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.


Assuntos
Células-Tronco Embrionárias/metabolismo , Degeneração Macular/terapia , Regeneração , Animais , Medula Óssea/metabolismo , Ensaios Clínicos como Assunto , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/congênito , Degeneração Macular/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/terapia , Transplante de Células-Tronco/métodos
2.
Sci Rep ; 6: 33792, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653836

RESUMO

Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare, early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene, which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here, we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T > C, p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE, however in patient-derived iPSC-RPE, BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery, from an early developmental stage, could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.

3.
Dev Ophthalmol ; 53: 97-110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732764

RESUMO

Retinal degeneration represents a huge burden of blinding disease, and currently there are no effective treatments that reverse the most common causes of neural retinal degeneration. Stem cell biology has the potential to significantly ease this burden, not only through the development of disease models of retinal degeneration but also in the manufacture of a replacement for the neural retinal tissue. This review summarizes the major advancements in the last decade in the field of neural retinal regeneration with an emphasis on the differentiation of embryonic and induced pluripotent stem cells into cells with retinal and specifically photoreceptor characteristics.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes , Degeneração Retiniana/terapia , Células Ganglionares da Retina/fisiologia , Animais , Humanos , Regeneração
4.
Trends Neurosci ; 36(7): 385-95, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23601133

RESUMO

Age-related macular degeneration (AMD) is the leading cause of vision loss in older adults and ultimately leads to the death of photoreceptor cells in the macular area of the neural retina. Currently, treatments are only available for patients with the wet form of AMD. In this review, we describe recent approaches to develop cell-based therapies for the treatment of AMD. Recent research has focused on replacing the retinal pigment epithelium (RPE), a monolayer of cells vital to photoreceptor cell health. We discuss the various methods used to differentiate and purify RPE from human embryonic stem cells (HESC), and describe the surgical approaches being used to transplant these cells in existing and forthcoming clinical trials.


Assuntos
Células-Tronco Embrionárias/transplante , Degeneração Macular/cirurgia , Transplante de Células-Tronco/métodos , Idade de Início , Animais , Humanos , Epitélio Pigmentado da Retina/citologia
5.
PLoS One ; 4(12): e8152, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19997644

RESUMO

Transformation of somatic cells with a set of embryonic transcription factors produces cells with the pluripotent properties of embryonic stem cells (ESCs). These induced pluripotent stem (iPS) cells have the potential to differentiate into any cell type, making them a potential source from which to produce cells as a therapeutic platform for the treatment of a wide range of diseases. In many forms of human retinal disease, including age-related macular degeneration (AMD), the underlying pathogenesis resides within the support cells of the retina, the retinal pigment epithelium (RPE). As a monolayer of cells critical to photoreceptor function and survival, the RPE is an ideally accessible target for cellular therapy. Here we report the differentiation of human iPS cells into RPE. We found that differentiated iPS-RPE cells were morphologically similar to, and expressed numerous markers of developing and mature RPE cells. iPS-RPE are capable of phagocytosing photoreceptor material, in vitro and in vivo following transplantation into the Royal College of Surgeons (RCS) dystrophic rat. Our results demonstrate that iPS cells can be differentiated into functional iPS-RPE and that transplantation of these cells can facilitate the short-term maintenance of photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual function is maintained in this model of retinal disease even though the xenografted cells are eventually lost, suggesting a secondary protective host cellular response. These findings have identified an alternative source of replacement tissue for use in human retinal cellular therapies, and provide a new in vitro cellular model system in which to study RPE diseases affecting human patients.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Doenças Retinianas/terapia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/transplante , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Polaridade Celular , Forma Celular , Sobrevivência Celular , Células Epiteliais/citologia , Células Epiteliais/transplante , Humanos , Imuno-Histoquímica , Macrófagos/citologia , Fagocitose , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/ultraestrutura , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA