RESUMO
Astrocytes play an important role in the regulation of the inflammatory response in the CNS, e.g., in demyelinating diseases. Since the chemokine CXCL1 is known to be secreted by astrocytes and to have a pro-inflammatory effect on immune cells in the CNS, we verified the effect of testosterone on its secretion in vitro (in the astrocytic cell line DI TNC1). Testosterone reduced the increase in CXCL1 production caused by the pro-inflammatory agent lysophosphatidylcholine and restored the basal production level of CXCL1. The androgen receptor (present and functional in the studied cell line) was strongly suggested to mediate this effect-its non-steroid ligand flutamide exerted an agonist-like effect, mimicking the activity of testosterone itself on CXCL1 secretion. This novel mechanism has important implications for the known immunomodulatory effect of testosterone and potentially other androgenic hormones. It provides a potential explanation on the molecular level and shows that astrocytes are important players in inflammatory homeostasis in the CNS and its hormonal regulation. Therefore, it suggests new directions for the development of the therapeutic intervention.
RESUMO
Lost myelin can be replaced after injury or during demyelinating diseases in a regenerative process called remyelination. In the central nervous system (CNS), the myelin sheaths, which protect axons and allow the fast propagation of electrical impulses, are produced by oligodendrocytes. The abundance and widespread distribution of oligodendrocyte progenitors (OPs) within the adult CNS account for this remarkable regenerative potential. Here, we report a key role for the male gonad, testosterone, and androgen receptor (AR) in CNS remyelination. After lysolecithin-induced demyelination of the male mouse ventral spinal cord white matter, the recruitment of glial fibrillary acidic protein-expressing astrocytes was compromised in the absence of testes and testosterone signaling via AR. Concomitantly, the differentiation of OPs into oligodendrocytes forming myelin basic protein (MBP)+ and proteolipid protein-positive myelin was impaired. Instead, in the absence of astrocytes, axons were remyelinated by protein zero (P0)+ and peripheral myelin protein 22-kDa (PMP22)+ myelin, normally only produced by Schwann cells in the peripheral nervous system. Thus, testosterone favors astrocyte recruitment and spontaneous oligodendrocyte-mediated remyelination. This finding may have important implications for demyelinating diseases, psychiatric disorders, and cognitive aging. The testosterone dependency of CNS oligodendrocyte remyelination may have roots in the evolutionary history of the AR, because the receptor has evolved from an ancestral 3-ketosteroid receptor through gene duplication at the time when myelin appeared in jawed vertebrates.