Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Psychiatry ; 26(12): 7107-7117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34321593

RESUMO

Although the physical and mental benefits of friendships are clear, the neurobiological mechanisms driving mutual social preferences are not well understood. Studies in humans suggest friends are more genetically similar, particularly for targets within the 3',5'-cyclic adenosine monophosphate (cAMP) cascade. Unfortunately, human studies can not provide conclusive evidence for such a biological driver of friendship given that other genetically related factors tend to co-segregate with friendship (e.g., geographical proximity). As such, here we use mice under controlled conditions to test the hypothesis that homophily in the cAMP-degrading enzyme phosphodiesterase 11A4 (PDE11A4) can dictate mutual social preference. Using C57BL/6J and BALB/cJ mice in two different behavioral assays, we showed that mice with two intact alleles of Pde11a prefer to interact with Pde11 wild-type (WT) mice of the same genetic background over knockout (KO) mice or novel objects; whereas, Pde11 KO mice prefer to interact with Pde11 KO mice over WT mice or novel objects. This mutual social preference was seen in both adult and adolescent mice, and social preference could be eliminated or artificially elicited by strengthening or weakening PDE11A homodimerization, respectively. Stereotactic delivery of an isolated PDE11A GAF-B domain to the mouse hippocampus revealed the membrane-associated pool of PDE11A-cAMP-CREB signaling specifically within the CA1 subfield of hippocampus is most critical for regulating social preference. Our study here not only identifies PDE11A homophily as a key driver of mutual social preference across the lifespan, it offers a paradigm in which other mechanisms can be identified in a controlled fashion.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases , Amigos , 3',5'-GMP Cíclico Fosfodiesterases/genética , Animais , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Comportamento Social
2.
Nucleic Acids Res ; 47(10): 5100-5113, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30869136

RESUMO

Bacterial genome duplication and transcription require simultaneous access to the same DNA template. Conflicts between the replisome and transcription machinery can lead to interruption of DNA replication and loss of genome stability. Pausing, stalling and backtracking of transcribing RNA polymerases add to this problem and present barriers to replisomes. Accessory helicases promote fork movement through nucleoprotein barriers and exist in viruses, bacteria and eukaryotes. Here, we show that stalled Escherichia coli transcription elongation complexes block reconstituted replisomes. This physiologically relevant block can be alleviated by the accessory helicase Rep or UvrD, resulting in the formation of full-length replication products. Accessory helicase action during replication-transcription collisions therefore promotes continued replication without leaving gaps in the DNA. In contrast, DinG does not promote replisome movement through stalled transcription complexes in vitro. However, our data demonstrate that DinG operates indirectly in vivo to reduce conflicts between replication and transcription. These results suggest that Rep and UvrD helicases operate on DNA at the replication fork whereas DinG helicase acts via a different mechanism.


Assuntos
DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , DNA Bacteriano/biossíntese , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Complexos Multienzimáticos/metabolismo , Transcrição Gênica
3.
Nucleic Acids Res ; 45(7): 3875-3887, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28160601

RESUMO

The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood. In this work, we define a minimal RNA polymerase interaction domain in PcrA, and report its crystal structure at 1.5 Å resolution. The domain adopts a Tudor-like fold that is similar to other RNA polymerase interaction domains, including that of the prototype transcription-repair coupling factor Mfd. Removal or mutation of the interaction domain reduces the ability of PcrA/UvrD to interact with and to remodel RNA polymerase complexes in vitro. The implications of this work for our understanding of the role of PcrA/UvrD at the interface of DNA replication, transcription and repair are discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Aminoácidos/química , Geobacillus stearothermophilus/enzimologia , Modelos Moleculares , Ligação Proteica , Elongação da Transcrição Genética , Domínio Tudor
4.
Nature ; 490(7420): 431-4, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22960746

RESUMO

Transcription-coupled DNA repair uses components of the transcription machinery to identify DNA lesions and initiate their repair. These repair pathways are complex, so their mechanistic features remain poorly understood. Bacterial transcription-coupled repair is initiated when RNA polymerase stalled at a DNA lesion is removed by Mfd, an ATP-dependent DNA translocase. Here we use single-molecule DNA nanomanipulation to observe the dynamic interactions of Escherichia coli Mfd with RNA polymerase elongation complexes stalled by a cyclopyrimidine dimer or by nucleotide starvation. We show that Mfd acts by catalysing two irreversible, ATP-dependent transitions with different structural, kinetic and mechanistic features. Mfd remains bound to the DNA in a long-lived complex that could act as a marker for sites of DNA damage, directing assembly of subsequent DNA repair factors. These results provide a framework for considering the kinetics of transcription-coupled repair in vivo, and open the way to reconstruction of complete DNA repair pathways at single-molecule resolution.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , Fatores de Transcrição/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/metabolismo , Biocatálise , Dano ao DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Cinética , Regiões Promotoras Genéticas/genética , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Elongação da Transcrição Genética , Iniciação da Transcrição Genética , Terminação da Transcrição Genética
5.
Mol Cell ; 40(5): 714-24, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145481

RESUMO

Transcription-coupled DNA repair (TCR) is a subpathway of nucleotide excision repair (NER) that is triggered when RNA polymerase is stalled by DNA damage. Lesions targeted by TCR are repaired more quickly than lesions repaired by the transcription-independent "global" NER pathway, but the mechanism underlying this rate enhancement is not understood. Damage recognition during bacterial NER depends upon UvrA, which binds to the damage and loads UvrB onto the DNA. Bacterial TCR additionally requires the Mfd protein, a DNA translocase that removes the stalled transcription complexes. We have determined the properties of Mfd, UvrA, and UvrB that are required for the elevated rate of repair observed during TCR. We show that TCR and global NER differ in their requirements for damage recognition by UvrA, indicating that Mfd acts at the very earliest stage of the repair process and extending the functional similarities between TCR in bacteria and eukaryotes.


Assuntos
Reparo do DNA , DNA Bacteriano/metabolismo , Transcrição Gênica/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(11): 4037-42, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24554077

RESUMO

Transcription-coupled nucleotide excision repair (TCR) accelerates the removal of noncoding lesions from the template strand of active genes, and hence contributes to genome-wide variations in mutation frequency. Current models for TCR suppose that a lesion must cause RNA polymerase (RNAP) to stall if it is to be a substrate for accelerated repair. We have examined the substrate requirements for TCR using a system in which transcription stalling and damage location can be uncoupled. We show that Mfd-dependent TCR in bacteria involves the formation of a damage search complex that can detect lesions downstream of a stalled RNAP, and that the strand specificity of the accelerated repair pathway is independent of the requirement for a lesion to stall RNAP. We also show that an ops (operon polarity suppressor) transcription pause site, which causes backtracking of RNAP, can promote the repair of downstream lesions when those lesions do not themselves cause the polymerase to stall. Our findings indicate that the transcription-repair coupling factor Mfd, which is an ATP-dependent superfamily 2 helicase that binds to RNAP, continues to translocate along DNA after RNAP has been displaced until a lesion in the template strand is located. The discovery that pause sites can promote the repair of nonstalling lesions suggests that TCR pathways may play a wider role in modulating mutation frequencies in different parts of the genome than has previously been suspected.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Genoma Bacteriano/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Plasmídeos/genética
7.
Nucleic Acids Res ; 40(20): 10408-16, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22904071

RESUMO

ATP-dependent nucleic acid helicases and translocases play essential roles in many aspects of DNA and RNA biology. In order to ensure that these proteins act only in specific contexts, their activity is often regulated by intramolecular contacts and interaction with partner proteins. We have studied the bacterial Mfd protein, which is an ATP-dependent DNA translocase that relocates or displaces transcription ECs in a variety of cellular contexts. When bound to RNAP, Mfd exhibits robust ATPase and DNA translocase activities, but when released from its substrate these activities are repressed by autoinhibitory interdomain contacts. In this work, we have identified an interface within the Mfd protein that is important for regulating the activity of the protein, and whose disruption permits Mfd to act indiscriminately at transcription complexes that lack the usual determinants of Mfd specificity. Our results indicate that regulation of Mfd occurs through multiple nodes, and that activation of Mfd may be a multi-stage process.


Assuntos
Proteínas de Bactérias/química , DNA/metabolismo , Fatores de Transcrição/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Estrutura Terciária de Proteína , Proteólise , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
medRxiv ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39148853

RESUMO

Background: The emergency personnel who responded to the World Trade Center (WTC) attacks endured severe occupational exposures, yet the prevalence of cognitive impairment remains unknown among WTC-exposed-FDNY-responders. The present study screened for mild and severe cognitive impairment in WTC-exposed FDNY responders using objective tests, compared prevalence rates to a cohort of non-FDNY WTC-exposed responders, and descriptively to meta-analytic estimates of MCI from global, community, and clinical populations. Methods: A sample of WTC-exposed-FDNY responders (n = 343) was recruited to complete an extensive battery of cognitive, psychological, and physical tests. The prevalences of domain-specific impairments were estimated based on the results of norm-referenced tests, and the Montreal Cognitive Assessment (MoCA), Jak/Bondi criteria, Petersen criteria, and the National Institute on Aging and Alzheimer's Association (NIA-AA) criteria were used to diagnose MCI. NIA-AA criteria were also used to diagnose severe cognitive impairment. Generalized linear models were used to compare prevalence estimates of cognitive impairment to a large sample of WTC-exposed-non-FDNY responders from the General Responder Cohort (GRC; n = 7102) who completed the MoCA during a similar time frame. Result: Among FDNY responders under 65 years, the unadjusted prevalence of MCI varied from 52.57% to 71.37% depending on the operational definition of MCI, apart from using a conservative cut-off applied to MoCA total scores (18 < MoCA < 23), which yielded a markedly lower crude prevalence (24.31%) compared to alternative criteria. The prevalence of MCI was higher among WTC-exposed-FDNY-responders, compared to WTC-exposed-non-FDNY-GRC-responders (adjusted RR = 1.53, 95% C.I. = [1.24, 1.88], p < .001) and meta-analytic estimates from different global, community, and clinical populations. Following NIA-AA diagnostic guidelines, 4.96% of WTC-exposed-FDNY-responders met the criteria for severe impairments (95% CI = [2.91% to 7.82%]), a prevalence that remained largely unchanged after excluding responders over the age of 65 years. Discussion: There is a high prevalence of mild and severe cognitive impairment among WTC-responders highlighting the putative role of occupational/environmental and disaster-related exposures in the etiology of accelerated cognitive decline.

9.
ACS Synth Biol ; 12(6): 1845-1858, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37224449

RESUMO

Synthetic biology applications would benefit from protein modules of reduced complexity that function orthogonally to cellular components. As many subcellular processes depend on peptide-protein or protein-protein interactions, de novo designed polypeptides that can bring together other proteins controllably are particularly useful. Thanks to established sequence-to-structure relationships, helical bundles provide good starting points for such designs. Typically, however, such designs are tested in vitro and function in cells is not guaranteed. Here, we describe the design, characterization, and application of de novo helical hairpins that heterodimerize to form 4-helix bundles in cells. Starting from a rationally designed homodimer, we construct a library of helical hairpins and identify complementary pairs using bimolecular fluorescence complementation in E. coli. We characterize some of the pairs using biophysics and X-ray crystallography to confirm heterodimeric 4-helix bundles. Finally, we demonstrate the function of an exemplar pair in regulating transcription in both E. coli and mammalian cells.


Assuntos
Escherichia coli , Biologia Sintética , Animais , Escherichia coli/genética , Peptídeos/química , Proteínas/química , Mamíferos
10.
PLoS One ; 17(8): e0271078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001623

RESUMO

Regular monitoring is an important component of the successful management of pelagic animals of interest to commercial fisheries. Here we provide a biomass estimate for Antarctic krill (Euphausia superba) in the eastern sector of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Division 58.4.2 (55°E to 80°E; area = 775,732 km2) using data collected during an acoustic-trawl survey carried out in February and March 2021. Using acoustic data collected in day-time and trawl data, areal biomass density was estimated as 8.3 gm-2 giving a total areal krill biomass of 6.48 million tonnes, with a 28.9% coefficient of variation (CV). The inaccessibility of the East Antarctic makes fisheries-independent surveys of Antarctic krill expensive and time consuming, so we also assessed the efficacy of extrapolating smaller surveys to a wider area. During the large-scale survey a smaller scale survey (centre coordinates -66.28°S 63.35°E, area = 4,902 km2) was conducted. We examine how representative krill densities from the small-scale (Mawson box) survey were over a latitudinal range by comparing krill densities from the large-scale survey split into latitudinal bands. We found the small scale survey provided a good representation of the statistical distribution of krill densities within its latitudinal band (KS-test, D = 0.048, p-value = 0.98), as well as mean density (t-test p-value = 0.44), but not outside of the band. We recommend further in situ testing of this approach.


Assuntos
Euphausiacea , Animais , Regiões Antárticas , Biomassa , Pesqueiros , Alimentos Marinhos
11.
Chem Sci ; 13(38): 11330-11340, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36320580

RESUMO

The design of completely synthetic proteins from first principles-de novo protein design-is challenging. This is because, despite recent advances in computational protein-structure prediction and design, we do not understand fully the sequence-to-structure relationships for protein folding, assembly, and stabilization. Antiparallel 4-helix bundles are amongst the most studied scaffolds for de novo protein design. We set out to re-examine this target, and to determine clear sequence-to-structure relationships, or design rules, for the structure. Our aim was to determine a common and robust sequence background for designing multiple de novo 4-helix bundles. In turn, this could be used in chemical and synthetic biology to direct protein-protein interactions and as scaffolds for functional protein design. Our approach starts by analyzing known antiparallel 4-helix coiled-coil structures to deduce design rules. In terms of the heptad repeat, abcdefg -i.e., the sequence signature of many helical bundles-the key features that we identify are: a = Leu, d = Ile, e = Ala, g = Gln, and the use of complementary charged residues at b and c. Next, we implement these rules in the rational design of synthetic peptides to form antiparallel homo- and heterotetramers. Finally, we use the sequence of the homotetramer to derive in one step a single-chain 4-helix-bundle protein for recombinant production in E. coli. All of the assembled designs are confirmed in aqueous solution using biophysical methods, and ultimately by determining high-resolution X-ray crystal structures. Our route from peptides to proteins provides an understanding of the role of each residue in each design.

12.
Cell Signal ; 70: 109592, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32119913

RESUMO

Many studies implicate altered cyclic nucleotide signaling in the pathophysiology of major depressive disorder (MDD), bipolar disorder (BPD), and schizophrenia (SCZ). As such, we explored how phosphodiesterases 2A (PDE2A) and 10A (PDE10A)-enzymes that break down cyclic nucleotides-may be altered in brains of these patients. Using autoradiographic in situ hybridization on postmortem brain tissue from the Stanley Foundation Neuropathology Consortium, we measured expression of PDE2 and PDE10 mRNA in multiple brain regions implicated in psychiatric pathophysiology, including cingulate cortex, orbital frontal cortex (OFC), superior temporal gyrus, hippocampus, parahippocampal cortex, amygdala, and the striatum. We also assessed how PDE2A and PDE10A expression changes in these brain regions across development using the Allen Institute for Brain Science Brainspan database. Compared to controls, patients with SCZ, MDD and BPD all showed reduced PDE2A mRNA in the amygdala. In contrast, PDE2A expression changes in frontal cortical regions were only significant in patients with SCZ, while those in caudal entorhinal cortex, hippocampus, and the striatum were most pronounced in patients with BPD. PDE10A expression was only detected in striatum and did not differ by disease group; however, all groups showed significantly less PDE10A mRNA expression in ventral versus dorsal striatum. Across development, PDE2A mRNA increased in these brain regions; whereas, PDE10A mRNA expression decreased in all regions except striatum. Thus, PDE2A mRNA expression changes in both a disorder- and brain region-specific manner, potentially implicating PDE2A as a novel diagnostic and/or patient-selection biomarker or therapeutic target.


Assuntos
Envelhecimento/metabolismo , Transtorno Bipolar/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Transtorno Depressivo Maior/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Esquizofrenia/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo
13.
ACS Synth Biol ; 9(2): 427-436, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31977192

RESUMO

Protein-protein interactions control a wide variety of natural biological processes. α-Helical coiled coils frequently mediate such protein-protein interactions. Due to the relative simplicity of their sequences and structures and the ease with which properties such as strength and specificity of interaction can be controlled, coiled coils can be designed de novo to deliver a variety of non-natural protein-protein interaction domains. Herein, several de novo designed coiled coils are tested for their ability to mediate protein-protein interactions in Escherichia coli cells. The set includes a parallel homodimer, a parallel homotetramer, an antiparallel homotetramer, and a newly designed heterotetramer, all of which have been characterized in vitro by biophysical and structural methods. Using a transcription repression assay based on reconstituting the Lac repressor, we find that the modules behave as designed in the cellular environment. Each design imparts a different property to the resulting Lac repressor-coiled coil complexes, resulting in the benefit of being able to reconfigure the system in multiple ways. Modification of the system also allows the interactions to be controlled: assembly can be tuned by controlling the expression of the constituent components, and complexes can be disrupted through helix sequestration. The small and straightforward de novo designed components that we deliver are highly versatile and have considerable potential as protein-protein interaction domains in synthetic biology where proteins must be assembled in highly specific ways. The relative simplicity of the designs makes them amenable to future modifications to introduce finer control over their assembly and to adapt them for different contexts.


Assuntos
Proteínas/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Escherichia coli/metabolismo , Óperon Lac/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas/química , Proteínas/genética , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Transcrição Gênica
14.
DNA Repair (Amst) ; 7(10): 1670-9, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18707026

RESUMO

Transcription-coupled DNA repair is a mechanism by which bulky DNA lesions that block transcription by RNA polymerase are prioritised for removal by the nucleotide excision repair apparatus. The trigger is thought to be the presence of an irreversibly blocked transcription complex, which is recognised by a transcription-repair coupling factor. Many common DNA lesions do not block transcription, but are bypassed with varying degrees of efficiency and with potentially mutagenic effects on the RNA transcripts that are produced. The effect of the bacterial transcription-repair coupling factor, Mfd, at such lesions is not known: it has been suggested that Mfd may promote mutagenesis by increasing the efficiency with which RNA polymerase bypasses non-bulky lesions, but it has also been reported that 8-oxoguanine, a major product of oxidative DNA damage that is efficiently bypassed by RNA polymerase, is subject to Mfd-dependent transcription-coupled repair in Escherichia coli. We have investigated the effect of Mfd during transcription of templates containing 8-oxoguanine, and various other non-bulky lesions. We show that an 8-oxoguanine in the template strand induces a transient pause in transcription, and that Mfd neither increases nor decreases the efficiency with which RNA polymerase bypasses the lesion. We also show that Mfd can displace a transcription complex stalled at a single strand nick, and that it decreases the efficiency with which RNA polymerase bypasses an abasic site. These activities are not affected by transcription rate, as similar results were obtained using "fast" and "slow" mutant RNA polymerases. Our findings suggest that 8-oxoguanine is unlikely to be directly targeted by the transcription-coupled repair pathway, and identify a potential role for Mfd in reducing the level of transcriptional mutagenesis caused by abasic sites.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Bacteriano/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Quebras de DNA de Cadeia Simples , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Guanina/análogos & derivados , Guanina/metabolismo , Proteínas Mutantes/metabolismo , Moldes Genéticos , Uracila/metabolismo
15.
Nucleic Acids Res ; 35(6): 1802-11, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17329375

RESUMO

Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes we have studied the bacterial transcription-repair coupling factor, Mfd, which is a helicase superfamily 2 member that binds to RNA polymerase (RNAP) and removes stalled transcription complexes from DNA. Using an oligonucleotide displacement assay that monitors protein movement on double-stranded DNA we show that Mfd has little motor activity in isolation, but exhibits efficient oligonucleotide displacement activity when bound to a stalled transcription complex. Deletion of the C-terminal domain of Mfd increases the ATPase activity of the protein and allows efficient oligo-displacement in the absence of RNAP. Our results suggest that an autoinhibitory domain ensures the motor activity of Mfd is only functional within the correct macromolecular context: recruitment of Mfd to a stalled transcription complex relieves the autoinhibition and unmasks the motor activity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/fisiologia , DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Homeostase , Modelos Moleculares , Estrutura Terciária de Proteína , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
16.
ACS Synth Biol ; 8(6): 1284-1293, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31059644

RESUMO

An improved ability to direct and control biomolecular interactions in living cells would have an impact on synthetic biology. A key issue is the need to introduce interacting components that act orthogonally to endogenous proteomes and interactomes. Here, we show that low-complexity, de novo designed protein-protein interaction (PPI) domains can substitute for natural PPIs and guide engineered protein-DNA interactions in Escherichia coli. Specifically, we use de novo homo- and heterodimeric coiled coils to reconstitute a cytoplasmic split adenylate cyclase, recruit RNA polymerase to a promoter and activate gene expression, and oligomerize both natural and designed DNA-binding domains to repress transcription. Moreover, the stabilities of the heterodimeric coiled coils can be modulated by rational design and, thus, adjust the levels of gene activation and repression in vivo. These experiments demonstrate the possibilities for using designed proteins and interactions to control biomolecular systems such as enzyme cascades and circuits in cells.


Assuntos
Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação/genética , DNA/química , DNA/metabolismo , Estrutura Secundária de Proteína/genética , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Transcrição Gênica/genética
17.
Curr Biol ; 29(14): 2307-2321.e5, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31303492

RESUMO

Systems consolidation is a process by which memories initially require the hippocampus for recent long-term memory (LTM) but then become increasingly independent of the hippocampus and more dependent on the cortex for remote LTM. Here, we study the role of phosphodiesterase 11A4 (PDE11A4) in systems consolidation. PDE11A4, which degrades cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is preferentially expressed in neurons of CA1, the subiculum, and the adjacently connected amygdalohippocampal region. In male and female mice, deletion of PDE11A enhances remote LTM for social odor recognition and social transmission of food preference (STFP) despite eliminating or silencing recent LTM for those same social events. Measurement of a surrogate marker of neuronal activation (i.e., Arc mRNA) suggests the recent LTM deficits observed in Pde11 knockout mice correspond with decreased activation of ventral CA1 relative to wild-type littermates. In contrast, the enhanced remote LTM observed in Pde11a knockout mice corresponds with increased activation and altered functional connectivity of anterior cingulate cortex, frontal association cortex, parasubiculum, and the superficial layer of medial entorhinal cortex. The apparent increased neural activation observed in prefrontal cortex of Pde11a knockout mice during remote LTM retrieval may be related to an upregulation of the N-methyl-D-aspartate receptor subunits NR1 and NR2A. Viral restoration of PDE11A4 to vCA1 alone is sufficient to rescue both the LTM phenotypes and upregulation of NR1 exhibited by Pde11a knockout mice. Together, our findings suggest remote LTM can be decoupled from recent LTM, which may have relevance for cognitive deficits associated with aging, temporal lobe epilepsy, or transient global amnesia.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/genética , Hipocampo/fisiologia , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/fisiologia , Neurônios/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout
18.
DNA Repair (Amst) ; 6(10): 1434-40, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17532270

RESUMO

The proposed mechanism for transcription coupled nucleotide excision repair (TCR) invokes RNA polymerase (RNAP) blocked at a DNA lesion as a signal to initiate repair. In Escherichia coli, TCR requires the interaction of RNAP with a transcription-repair coupling factor encoded by the mfd gene. The interaction between RNAP and Mfd depends upon amino acids 117, 118, and 119 of the beta subunit of RNAP; changing any one of these to alanine diminishes the interaction [1]. Using direct assays for TCR, and the lac operon of E. coli containing UV induced cyclobutane pyrimidine dimers (CPDs) as substrate, we have found that a change from arginine to cysteine at amino acid 529 of the beta subunit of the RNAP inactivates TCR, but does not prevent the interaction of RNAP with Mfd. Our results suggest that this interaction may be necessary but not sufficient to facilitate TCR.


Assuntos
Arginina/metabolismo , Reparo do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Transcrição Gênica , Arginina/química , Dano ao DNA , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia
19.
Nucleic Acids Res ; 34(8): 2219-29, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16648364

RESUMO

The three structural domains of transcription elongation factor TFIIS are conserved from yeast to human. Although the N-terminal domain is not needed for transcriptional activity, a similar sequence has been identified previously in other transcription factors. We found this conserved sequence, the LW motif, in another three human proteins that are predominantly nuclear localized. We investigated two examples to determine whether the LW motif is actually a dedicated nuclear targeting signal. However, in one of the newly identified proteins, hIWS1 (human Iws1), a region containing classic nuclear localization signals (NLS) rather than the LW motif was necessary and sufficient for nuclear targeting in HeLa cells. In contrast, human TFIIS does not possess an NLS and only constructs containing the LW motif were efficiently targeted to nuclei. Moreover, mutations in the motif could cause cytoplasmic accumulation of TFIIS and enabled a structure/function assay for the domain based on the efficiency of nuclear targeting. Finally, GST pull-down assays showed that the LW motif is part of a protein-binding domain. We suggest that the targeting role the LW motif plays in TFIIS arises from its more general function as a protein interaction domain, enabling TFIIS to bind a carrier protein(s) that accomplishes nuclear import.


Assuntos
Proteínas Nucleares/química , Fatores de Elongação da Transcrição/química , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Núcleo Celular/química , Núcleo Celular/metabolismo , Sequência Conservada , Células HeLa , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas/análise , Proteínas/química , Proteínas/metabolismo , Proteínas de Ligação a RNA , Alinhamento de Sequência , Fatores de Transcrição , Fatores de Elongação da Transcrição/metabolismo
20.
Mol Biol Cell ; 14(3): 1255-67, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631738

RESUMO

We have examined the localization and targeting of the RNA polymerase II (pol II) transcription elongation factor TFIIS in amphibian oocyte nuclei by immunofluorescence. Using a novel antibody against Xenopus TFIIS the major sites of immunostaining were found to be Cajal bodies, nuclear organelles that also contain pol II. Small granular structures attached to lampbrush chromosomes were also specifically stained but the transcriptionally active loops were not. Similar localization patterns were found for the newly synthesized myc-tagged TFIIS produced after injection of synthetic transcripts into the cytoplasm. The basis of the rapid and preferential targeting of TFIIS to Cajal bodies was investigated by examining the effects of deletion and site-specific mutations. Multiple regions of TFIIS contributed to efficient targeting including the domain required for its binding to pol II. The localization of TFIIS in Cajal bodies, and in particular the apparent involvement of pol II binding in achieving it, offer further support for a model in which Cajal bodies function in the preassembly of the transcriptional machinery. Although our findings are therefore consistent with TFIIS playing a role in early events of the transcription cycle, they also suggest that this elongation factor is not generally required during transcription in oocytes.


Assuntos
Núcleo Celular/química , Corpos Enovelados/química , Oócitos/fisiologia , Fatores Genéricos de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Xenopus laevis/fisiologia , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Mutagênese Sítio-Dirigida , Oócitos/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Fatores Genéricos de Transcrição/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA