RESUMO
Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.
Assuntos
Dopamina , Microglia , Gravidez , Feminino , Camundongos , Masculino , Animais , Microglia/metabolismo , Dopamina/metabolismo , Comportamento Social , Emissões de Veículos , Neurônios DopaminérgicosRESUMO
Sex differences exist in numerous parameters of the brain. Yet, sex-related factors are part of a large set of variables that interact to affect many aspects of brain structure and function. This raises questions regarding how to interpret findings of sex differences at the level of single brain measures and the brain as a whole. In the present study, we reanalyzed two datasets consisting of measures of oxytocin, vasopressin V1a, and mu opioid receptor binding densities in multiple brain regions in rats. At the level of single brain measures, we found that sex differences were rarely dimorphic and were largely persistent across estrous stage and parental status but not across age or context. At the level of aggregates of brain measures showing sex differences, we tested whether individual brains are 'mosaics' of female-typical and male-typical measures or are internally consistent, having either only female-typical or only male-typical measures. We found mosaicism for measures showing overlap between females and males. Mosaicism was higher a) with a larger number of measures, b) with smaller effect sizes of the sex difference in these measures, and c) in rats with more diverse life experiences. Together, these results highlight the limitations of the binary framework for interpreting sex effects on the brain and suggest two complementary pathways to studying the contribution of sex to brain function: (1) focusing on measures showing dimorphic and persistent sex differences and (2) exploring the relations between specific brain mosaics and specific endpoints.
Assuntos
Encéfalo , Ocitocina , Feminino , Ratos , Masculino , Animais , Encéfalo/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Ligação Proteica , Caracteres SexuaisRESUMO
Increasing prevalence of native lowlanders sojourning to high altitudes (>2,500 m) for recreational, occupational, military, and competitive reasons has generated increased interest in physiological responses to multistressor environments. Exposure to hypoxia poses recognized physiological challenges that are amplified during exercise and further complicated by environments that might include combinations of heat, cold, and high altitude. There is a sparsity of data examining integrated responses in varied combinations of environmental conditions, with even less known about potential sex differences. How this translates into performance, occupational, and health outcomes requires further investigation. Acute hypoxic exposure decreases arterial oxygen saturation, resulting in a reflex hypoxic ventilatory response and sympathoexcitation causing an increase in heart rate, myocardial contractility, and arterial blood pressure, to compensate for the decreased arterial oxygen saturation. Acute altitude exposure impairs exercise performance, for example, reduced time to exhaustion and slower time trials, largely owing to impairments in pulmonary gas exchange and peripheral delivery resulting in reduced VÌo2max. This exacerbates with increasing altitude, as does the risk of developing acute mountain sickness and more serious altitude-related illnesses, but modulation of those risks with additional stressors is unclear. This review aims to summarize and evaluate current literature regarding cardiovascular, autonomic, and thermoregulatory responses to acute hypoxia, and how these may be affected by simultaneous thermal environmental challenges. There is minimal available information regarding sex as a biological variable in integrative responses to hypoxia or multistressor environments; we highlight these areas as current knowledge gaps and the need for future research.
Assuntos
Doença da Altitude , Caracteres Sexuais , Humanos , Masculino , Feminino , Hipóxia , Altitude , Pulmão , OxigênioRESUMO
Many instances of sickness critically involve the immune system. The immune system talks to the brain in a bidirectional loop. This discourse affords the immune system immense control, such that it can influence behavior and optimize recovery from illness. These behavioral responses to infection are called sickness behaviors and can manifest in many ways, including changes in mood, motivation, or energy. Fascinatingly, most of these changes are conserved across species, and most organisms demonstrate some form of sickness behaviors. One of the most interesting sickness behaviors, and not immediately obvious, is altered sociability. Here, we discuss how the immune system impacts social behavior, by examining the brain regions and immune mediators involved in this process. We first outline how social behavior changes in response to infection in various species. Next, we explore which brain regions control social behavior and their evolutionary origins. Finally, we describe which immune mediators establish the link between illness and social behavior, in the context of both normal development and infection. Overall, we hope to make clear the striking similarities between the mechanisms that facilitate changes in sociability in derived and ancestral vertebrate, as well as invertebrate, species.
Assuntos
Comportamento de Doença , Comportamento Social , Animais , Encéfalo , Comportamento de Doença/fisiologia , Sistema ImunitárioRESUMO
Vasopressin (AVP) and oxytocin (OXT) regulate social behavior by binding to their canonical receptors, the vasopressin V1a receptor (V1aR) and oxytocin receptor (OTR), respectively. Recent studies suggest that these neuropeptides may also signal via each other's receptors. The extent to which such cross-system signaling occurs likely depends on anatomical overlap between AVP/OXT fibers and V1aR/OTR expression. By comparing AVP/OXT fiber densities with V1aR/OTR binding densities throughout the rat social behavior neural network (SBNN), we propose the potential for cross-system signaling in four regions: the medial amygdala (MeA), bed nucleus of the stria terminalis (BNSTp), medial preoptic area, and periaqueductal grey. We also discuss possible implications of corresponding sex (higher in males versus females) and age (higher in adults versus juveniles) differences in AVP fiber and OTR binding densities in the MeA and BNSTp. Overall, this review reveals the need to unravel the consequences of potential cross-system signaling between AVP and OXT systems in the SBNN for the regulation of social behavior.
Assuntos
Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Comportamento Social , Vasopressinas/metabolismo , Animais , Humanos , Rede Nervosa/metabolismoRESUMO
Decreases in social behavior are a hallmark aspect of acute "sickness behavior" in response to infection. However, immune insults that occur during the perinatal period may have long-lasting consequences for adult social behavior by impacting the developmental organization of underlying neural circuits. Microglia, the resident immune cells of the central nervous system, are sensitive to immune stimulation and play a critical role in the developmental sculpting of neural circuits, making them likely mediators of this process. Here, we investigated the impact of a postnatal day (PND) 4 lipopolysaccharide (LPS) challenge on social behavior in adult mice. Somewhat surprisingly, neonatal LPS treatment decreased sociability in adult female, but not male mice. LPS-treated females also displayed reduced social interaction and social memory in a social discrimination task as compared to saline-treated females. Somatostatin (SST) interneurons within the anterior cingulate cortex (ACC) have recently been suggested to modulate a variety of social behaviors. Interestingly, the female-specific changes in social behavior observed here were accompanied by an increase in SST interneuron number in the ACC. Finally, these changes in social behavior and SST cell number do not appear to depend on microglial inflammatory signaling, because microglia-specific genetic knock-down of myeloid differentiation response protein 88 (MyD88; the removal of which prevents LPS from increasing proinflammatory cytokines such as TNFα and IL-1ß) did not prevent these LPS-induced changes. This study provides novel evidence for enduring effects of neonatal immune activation on social behavior and SST interneurons in females, largely independent of microglial inflammatory signaling.
Assuntos
Células Secretoras de Somatostatina , Somatostatina , Animais , Contagem de Células , Feminino , Lipopolissacarídeos , Camundongos , Microglia , Gravidez , Comportamento SocialRESUMO
Hypertension is associated with endothelial dysfunction and vascular remodeling. OBJECTIVE: To assess effects of antihypertensive pharmacotherapy on eNOS- and iNOS-dependent mechanisms and maximal vasodilator capacity in the cutaneous microvasculature. METHODS: Intradermal microdialysis fibers were placed in 15 normotensive (SBP 111±2 mm Hg), 12 unmedicated hypertensive (SBP 142±2 mm Hg), and 12 medicated hypertensive (SBP 120±2 mm Hg) subjects. Treatments were control, iNOS-inhibited (1400w), and NOS-inhibited (l-NAME). Red cell flux, measured during local heating (42°C) and ACh dose-response protocols, was normalized to CVC (flux MAP-1 ) and a percentage of maximal vasodilation (%CVCmax ). RESULTS: Compared to normotensives, ACh-mediated vasodilation was attenuated in the hypertensive (P<.001), but not in medicated subjects (P=.83). NOS inhibition attenuated ACh-mediated vasodilation in normotensives compared to hypertensive (P<.001) and medicated (P<.001) subjects. With iNOS inhibition, there was no difference in ACh-mediated vasodilation between groups. Compared to the normotensives, local heat-induced vasodilation was attenuated in the hypertensives (P<.001), but iNOS inhibition augmented vasodilation in the hypertensives so this attenuation was abolished (P=.31). Compared to normotensives, maximal vasodilator capacity was reduced in the hypertensive (P=.014) and medicated subjects (P=.004). CONCLUSIONS: In the cutaneous microvasculature, antihypertensive pharmacotherapy improved endothelial function through NO-dependent and NO-independent mechanisms, but did not improve maximal vasodilator capacity.
Assuntos
Pressão Sanguínea/efeitos dos fármacos , Microvasos/fisiopatologia , Óxido Nítrico/metabolismo , Pele/irrigação sanguínea , Anti-Hipertensivos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Humanos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Vasodilatação/efeitos dos fármacosRESUMO
Exploration of novel environments, stimuli, and conspecifics is highly adaptive during the juvenile period, as individuals transition from immaturity to adulthood. We recently showed that juvenile rats prefer to interact with a novel individual over a familiar cage mate. However, the neural mechanisms underlying this juvenile social novelty-seeking behavior remain largely unknown. One potential candidate is the oxytocin (OXT) system, given its involvement in various motivated social behaviors. Here, we show that administration of the specific oxytocin receptor antagonist desGly-NH2,d(CH2)5-[Tyr(Me)2,Thr4]OVT reduces social novelty seeking-behavior in juvenile male rats when injected into the nucleus accumbens (10ng/0.5µl/side). The same drug dose was ineffective at altering social novelty-seeking behavior when administered into the lateral septum or basolateral amygdala. These results are the first to suggest the involvement of the OXT system in the nucleus accumbens in the regulation of juvenile social novelty-seeking behavior.
Assuntos
Comportamento Exploratório/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Comportamento Social , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Masculino , Motivação , Ocitocina/metabolismo , Ratos , Ratos Wistar , Receptores de Ocitocina/efeitos dos fármacosRESUMO
Short sleep duration and poor quality of sleep have been associated with health risks including cardiovascular disease, diabetes, and obesity. Prior research has suggested that regular aerobic exercise improves the quality of sleep; however, less is known regarding resistance exercise (RE) and how RE may affect sleep architecture. The purpose of this study was to investigate the acute effects of timing of RE on sleep architecture and nocturnal blood pressure. College-aged subjects engaged in 5 laboratory visits. Visits 1 (C) and 2 provided a non-RE control day and established the 10-repetition maximum on each of 9 RE machines, respectively. During visits 3-5, the subjects reported at 0700 hours (7A), 1300 hours (1P), and 1900 hours (7P) in a randomized order to perform 30 minutes of RE. Ambulatory blood pressure and sleep-monitoring devices were worn during sleep after C, 7A, 1P, and 7P. Time to fall asleep was significantly different between RE conditions 7A and 1P and between 7A and 7P. All exercise conditions exhibited significantly fewer times woken than the non-RE control day, with 7P resulting in significantly less time awake after initially falling asleep as compared with C. Although timing of RE does not seem to statistically impact sleep stages or nocturnal blood pressure, these data indicate that engaging in RE at any time of the day may improve quality of sleep as compared with no RE. Resistance exercise may offer additional benefits regarding the ability to fall asleep and stay asleep to populations with osteoporosis, sarcopenia, anxiety, or depression.
Assuntos
Pressão Sanguínea , Exercício Físico/fisiologia , Sono/fisiologia , Monitorização Ambulatorial da Pressão Arterial , Humanos , Polissonografia , Treinamento Resistido , Fatores de Tempo , Adulto JovemRESUMO
Aging is associated with attenuated thermoregulatory function that varies regionally over the body. Decrements in vasodilation and sweating are well documented with age, yet limited data are available concerning the regional relation between these responses. We aimed to examine age-related alterations in the relation between regional sweating (RSR) and skin blood flow (SkBF) to thermal and pharmacological stimuli. Four microdialysis fibers were inserted in the ventral forearm, abdomen, thigh, and lower back of eight healthy aged subjects (64 ± 7 yr) and nine young (23 ± 3 yr) during 1) ACh dose response (1 × 10(-7) to 0.1 M, mean skin temperature 34°C) and 2) passive whole body heating to Δ1°C rise in oral temperature (Tor). RSR and SkBF were measured over each microdialysis membrane using ventilated capsules and laser-Doppler flowmetry. Maximal SkBF was measured at the end of both protocols (50 mM SNP). Regional sweating thresholds and RSR were attenuated in aged vs. young at all sites (P < 0.0001) during whole body heating. Vasodilation thresholds were similar between groups (P > 0.05). Attenuated SkBF were observed at the arm and back in the aged, representing 56 and 82% of those in the young at these sites, respectively (0.5 ΔTor). During ACh perfusion, SkBF (P = 0.137) and RSR were similar between groups (P = 0.326). Together these findings suggest regional age-related decrements in heat-activated sweat gland function but not cholinergic sensitivity. Functional consequences of such thermoregulatory impairment include the compromised ability of older individuals to defend core temperature during heat exposure and a subsequently greater susceptibility to heat-related illness and injury.
Assuntos
Envelhecimento/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea , Sudorese/fisiologia , Acetilcolina/farmacologia , Adulto , Fatores Etários , Idoso , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Regulação da Temperatura Corporal/efeitos dos fármacos , Regulação da Temperatura Corporal/fisiologia , Feminino , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Temperatura Alta , Humanos , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/efeitos dos fármacos , Pele/efeitos dos fármacos , Temperatura Cutânea/efeitos dos fármacos , Temperatura Cutânea/fisiologia , Sudorese/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Vasodilatadores/farmacologiaRESUMO
Regional variation in sweating over the human body is widely recognized yet variation in vasomotor responses and mechanisms causing this variation remain unclear. This study aimed to explore the relation between regional sweating rates (RSR) and skin blood flow (SkBF) responses to thermal and pharmacological stimuli in young, healthy subjects. In nine subjects (23 ± 3 yr), intradermal microdialysis (MD) probes were inserted into the ventral forearm, abdomen, thigh, and lower back and perfused with lactated Ringer solution. RSR over each MD membrane were measured using ventilated capsules with a laser Doppler probe housed in each capsule for measurement of red cell flux (laser Doppler flux, LDF) as an index of SkBF. Subjects completed a whole body heating protocol to 1°C rise in oral temperature and an acetylcholine dose response (ACh 1 × 10(-7)-0.1 M; mean skin temperature 34°C). Maximal LDF were obtained at the end of both protocols (50 mM sodium nitroprusside).During heating RSR varied among sites (P < 0.0001) and was greater on the back versus other sites (P < 0.05), but LDF was similar between sites (P = 0.343). RSR and SkBF showed a strong relation during initial (arm: r = 0.77 ± 0.09, thigh: r = 0.81 ± 0.08, abdomen: r = 0.89 ± 0.04, back: r = 0.86 ± 0.04) but not latter stages of heating. No differences in RSR (P = 0.160) or SkBF (LDF, P = 0.841) were observed between sites during ACh perfusion. Taken together, these data suggest that increases in SkBF are necessary to initiate and increase sweating, but further rises in RSR are not fully dependent on SkBF in a dose-response manner. Furthermore, RSR cannot be explained by cholinergic sensitivity or variation in SkBF.
Assuntos
Acetilcolina/farmacologia , Temperatura Alta , Pele/irrigação sanguínea , Sudorese/fisiologia , Vasodilatadores/farmacologia , Acetilcolina/administração & dosagem , Adulto , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Vasodilatadores/administração & dosagem , Adulto JovemRESUMO
Essential hypertension (HT) is associated with endothelial dysfunction augmented vasoconstriction (VC) which may be secondary to increased Rho/Rho-Kinase (ROCK)-dependent mechanisms. Our aim was to assess the in vivo magnitude of cutaneous VC to local cooling as a ROCK specific stimulus, and in vitro evaluate ROCK activity in the skin from HT humans. Four microdialysis fibers were placed in the forearm of 9 pre- to stage I hypertensive (MAP: 106±3 mm Hg) and 11 normotensive (NT; 86±1 mm Hg) men and women: Ringers (control), 3mM fasudil (ROCK inhibited), 5mM yohimbine+1mM proprananol (α- and ß-adrenoceptor inhibited; Y+P), Y+P+3mM fasudil (ROCK and adrenocepor inhibited). Skin blood flow was measured during local cooling (Tskl 24°C) and ROCK activity in the skin biopsy samples was determined with western blot. In vitro phosphorylated myosin phosphatase target subunit 1 (pMYPT-1)/ROCK was increased in the HT skin samples (p=0.0018). Functionally, no difference in basal vasomotor tone (Tskl 34°C) was observed between the groups (HT: 0.36±0.07 vs. NT: 0.31±0.07 CVC), nor at the control site during local cooling. Pre- to stage 1 hypertensives show greater ROCK-mediated vasoconstriction at early (1-5 min; HT: -0.8±0.2 versus NT: -0.3±0.2 ΔCVC baseline 1; P<0.0001) and late (36-40 min; HT: -0.9±0.1 versus NT: -0.5±0.2 ΔCVC baseline 1; P<0.0001) phases of local cooling. These data suggest that the magnitude of cutaneous vasoconstriction to local cooling does not differ in normotensive and pre- to stage I essential hypertensive humans; however, ROCK activity is increased and functional vasoconstriction is increasingly dependent upon Rho/ROCK mechanisms with essential hypertension.
Assuntos
Hipertensão/enzimologia , Hipertensão/fisiopatologia , Pré-Hipertensão/enzimologia , Pré-Hipertensão/fisiopatologia , Pele/irrigação sanguínea , Pele/enzimologia , Vasoconstrição , Quinases Associadas a rho/metabolismo , Antagonistas Adrenérgicos beta/administração & dosagem , Análise de Variância , Biópsia , Velocidade do Fluxo Sanguíneo , Western Blotting , Estudos de Casos e Controles , Temperatura Baixa , Feminino , Humanos , Fluxometria por Laser-Doppler , Masculino , Microdiálise , Pessoa de Meia-Idade , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Fluxo Sanguíneo Regional , Pele/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidoresRESUMO
Ambulatory sleep and blood pressure monitoring are gaining popularity as these can be completed in an individual's home. Little is known regarding the reliability of data and the time it takes to acclimate to the equipment. This study aimed to determine how many nights of wearing the monitoring equipment were required to restore sleep architecture and blood pressure data to baseline. It was hypothesized familiarization would be demonstrated by night 3. Ten male and 10 female subjects completed three nights of sleep and blood pressure recordings. At visit 1, the subjects were familiarized with the equipment and instructed to wear the Sleep Profiler{trade mark, serif} and SunTech Medical Oscar2 ambulatory blood pressure cuff simultaneously for three consecutive nights, then subjects returned the equipment. The percent of time spent in rapid eye-movement (REM) sleep was statistically different on night 3 when compared to night 1. Wake-after-sleep onset and sleep latency were not statistically different between nights 1, 2, and 3. Systolic, diastolic, and pulse pressure were all significantly lower on night 3 compared to night 1. Cortical and autonomic arousals were statistically different on night 3. Ambulatory sleep and blood pressure monitoring need at least 3 nights for familiarization. The percent of time spent in REM sleep was statistically different on night 3 when compared to night 1. Systolic blood pressure, diastolic blood pressure, and pulse pressure were all significantly lower on night 3 compared to night 1. Cortical and autonomic arousals were statistically different on nights 3 and 2, respectively compared to night 1. Based on these findings, ambulatory sleep and blood pressure monitoring takes three nights before the data are reliable and the person is familiarized with the mode of measurement. Therefore, it is recommended to use at least three nights of data collection when using the Sleep Profiler and Oscar2 ambulatory blood pressure cuff in order for results to be valid and reliable.
Assuntos
Monitorização Ambulatorial da Pressão Arterial , Sono , Humanos , Masculino , Feminino , Pressão Sanguínea/fisiologia , Reprodutibilidade dos Testes , Sono/fisiologia , Sono REM/fisiologiaRESUMO
The current opioid epidemic has dramatically increased the number of children who are prenatally exposed to opioids, including oxycodone. A number of social and cognitive abnormalities have been documented in these children as they reach young adulthood. However, little is known about the mechanisms underlying developmental effects of prenatal opioid exposure. Microglia, the resident immune cells of the brain, respond to acute opioid exposure in adulthood. Moreover, microglia are known to sculpt neural circuits during typical development. Indeed, we recently found that microglial phagocytosis of dopamine D1 receptors (D1R) in the nucleus accumbens (NAc) is required for the natural developmental decline in NAc-D1R that occurs between adolescence and adulthood in rats. This microglial pruning occurs only in males, and is required for the normal developmental trajectory of social play behavior. However, virtually nothing is known as to whether this developmental program is altered by prenatal exposure to opioids. Here, we show in rats that maternal oxycodone self-administration during pregnancy leads to reduced adolescent microglial phagocytosis of D1R and subsequently higher D1R density within the NAc in adult male, but not female, offspring. Finally, we show prenatal and adult behavioral deficits in opioid-exposed offspring, including impaired extinction of oxycodone-conditioned place preference in males. This work demonstrates for the first time that microglia play a key role in translating prenatal opioid exposure to changes in neural systems and behavior.
Assuntos
Analgésicos Opioides , Efeitos Tardios da Exposição Pré-Natal , Analgésicos Opioides/farmacologia , Animais , Dopamina/farmacologia , Feminino , Humanos , Masculino , Microglia/metabolismo , Núcleo Accumbens , Oxicodona/farmacologia , Gravidez , Ratos , Receptores de Dopamina D1/metabolismo , RecompensaRESUMO
Gestational exposure to environmental toxins and socioeconomic stressors is epidemiologically linked to neurodevelopmental disorders with strong male bias, such as autism. We model these prenatal risk factors in mice by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly activates the maternal immune system. Only male offspring display long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions. Cellularly, prenatal stressors diminish microglial function within the anterior cingulate cortex, a central node of the social coding network, in males during early postnatal development. Precise inhibition of microglial phagocytosis within the anterior cingulate cortex (ACC) of wild-type (WT) mice during the same critical period mimics the impact of prenatal stressors on a male-specific behavior, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development.
Assuntos
Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/fisiologia , Encéfalo , Feminino , Humanos , Masculino , Camundongos , Microglia , GravidezRESUMO
Regional variation in sweating over the body is widely recognised. However, most studies only measured a limited number of regions, with the use of differing thermal states across studies making a good meta-analysis to obtain a whole body map problematic. A study was therefore conducted to investigate regional sweat rates (RSR) and distributions over the whole body in male athletes. A modified absorbent technique was used to collect sweat at two exercise intensities [55% (I1) and 75% (I2) VO2(max)] in moderately warm conditions (25°C, 50% rh, 2 m s(-1) air velocity). At I1 and I2, highest sweat rates were observed on the central (upper and mid) and lower back, with values as high as 1,197, 1,148, and 856 g m(-2) h(-1), respectively, at I2. Lowest values were observed on the fingers, thumbs, and palms, with values of 144, 254, and 119 g m(-2) h(-1), respectively at I2. Sweat mapping of the head demonstrated high sweat rates on the forehead (1,710 g m(-2) h(-1) at I2) compared with low values on the chin (302 g m(-2) h(-1) at I2) and cheeks (279 g m(-2) h(-1) at I2). Sweat rate increased significantly in all regions from the low to high exercise intensity, with exception of the feet and ankles. No significant correlation was present between RSR and regional skin temperature (T (sk)), nor did RSR correspond to known patterns of regional sweat gland density. The present study has provided detailed regional sweat data over the whole body and has demonstrated large intra- and inter-segmental variation and the presence of consistent patterns of regional high versus low sweat rate areas in Caucasians male athletes. This data may have important applications for clothing design, thermophysiological modelling and thermal manikin design.
Assuntos
Atletas , Exercício Físico/fisiologia , Febre/etiologia , Febre/fisiopatologia , Sudorese/fisiologia , Adulto , Composição Corporal , Superfície Corporal , Regulação da Temperatura Corporal/fisiologia , Ambiente Controlado , Teste de Esforço , Febre/reabilitação , Humanos , Masculino , Temperatura Cutânea/fisiologia , Adulto JovemRESUMO
Social withdrawal is a core component of the behavioral response to infection. This fact points to a deep evolutionary and biologic relationship between the immune system and the social brain. Indeed, a large body of literature supports such an intimate connection. In particular, immune activation during the perinatal period has been shown to have long-lasting consequences for social behavior, but the neuroimmune mechanisms by which this occurs are only partially understood. Microglia, the resident immune cells of the brain, influence the formation of neural circuits by phagocytosing synaptic and cellular elements, as well as by releasing chemokines and cytokines. Intriguingly, microbiota, especially those that reside within the gut, may also influence brain development via the release of metabolites that travel to the brain, by influencing vagal nerve signaling, or by modulating the host immune system. Here, I will review the work suggesting important roles for microglia and microbiota in social circuit formation during development. I will then highlight avenues for future work in this area, as well as technological advances that extend our capacity to ask mechanistic questions about the relationships between microglia, microbiota, and the social brain.
RESUMO
As a highly social species, inclusion in social networks and the presence of strong social bonds are critical to our health and well-being. Indeed, impaired social functioning is a component of numerous neuropsychiatric disorders including depression, anxiety, and substance use disorder. During the current COVID-19 pandemic, our social networks are at risk of fracture and many are vulnerable to the negative consequences of social isolation. Importantly, infection itself leads to changes in social behavior as a component of "sickness behavior." Furthermore, as in the case of COVID-19, males and females often differ in their immunological response to infection, and, therefore, in their susceptibility to negative outcomes. In this review, we discuss the many ways in which infection changes social behavior-sometimes to the benefit of the host, and in some instances for the sake of the pathogen-in species ranging from eusocial insects to humans. We also explore the neuroimmune mechanisms by which these changes in social behavior occur. Finally, we touch upon the ways in which the social environment (group living, social isolation, etc.) shapes the immune system and its ability to respond to challenge. Throughout we emphasize how males and females differ in their response to immune activation, both behaviorally and physiologically.
RESUMO
The purpose of this consensus document was to develop feasible, evidence-based occupational heat safety recommendations to protect the US workers that experience heat stress. Heat safety recommendations were created to protect worker health and to avoid productivity losses associated with occupational heat stress. Recommendations were tailored to be utilized by safety managers, industrial hygienists, and the employers who bear responsibility for implementing heat safety plans. An interdisciplinary roundtable comprised of 51 experts was assembled to create a narrative review summarizing current data and gaps in knowledge within eight heat safety topics: (a) heat hygiene, (b) hydration, (c) heat acclimatization, (d) environmental monitoring, (e) physiological monitoring, (f) body cooling, (g) textiles and personal protective gear, and (h) emergency action plan implementation. The consensus-based recommendations for each topic were created using the Delphi method and evaluated based on scientific evidence, feasibility, and clarity. The current document presents 40 occupational heat safety recommendations across all eight topics. Establishing these recommendations will help organizations and employers create effective heat safety plans for their workplaces, address factors that limit the implementation of heat safety best-practices and protect worker health and productivity.
RESUMO
Microglia are the innate immune cells of the central nervous system. Although numerous methods have been developed to isolate microglia from the brain, the method of dissociation and isolation can have a profound effect on the function of these highly dynamic cells. Here, we present an optimized protocol to isolate CD11b+ cells (microglia) from mouse or human brain tissue using magnetic bead columns. Isolated microglia can be used to model diseases with neuroinflammatory components for potential therapeutic discoveries. For complete details on the use and execution of this protocol, please refer to Hanamsagar et al. (2017), Rivera et al. (2019), and Edlow et al. (2019).