Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nature ; 604(7906): 517-524, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418684

RESUMO

The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.


Assuntos
Longevidade , Taxa de Mutação , Animais , Humanos , Longevidade/genética , Mamíferos/genética , Mutagênese/genética , Mutação
2.
Genome Res ; 33(9): 1513-1526, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625847

RESUMO

Changes in gene regulation are thought to underlie most phenotypic differences between species. For subterranean rodents such as the naked mole-rat, proposed phenotypic adaptations include hypoxia tolerance, metabolic changes, and cancer resistance. However, it is largely unknown what regulatory changes may associate with these phenotypic traits, and whether these are unique to the naked mole-rat, the mole-rat clade, or are also present in other mammals. Here, we investigate regulatory evolution in the heart and liver from two African mole-rat species and two rodent outgroups using genome-wide epigenomic profiling. First, we adapted and applied a phylogenetic modeling approach to quantitatively compare epigenomic signals at orthologous regulatory elements and identified thousands of promoter and enhancer regions with differential epigenomic activity in mole-rats. These elements associate with known mole-rat adaptations in metabolic and functional pathways and suggest candidate genetic loci that may underlie mole-rat innovations. Second, we evaluated ancestral and species-specific regulatory changes in the study phylogeny and report several candidate pathways experiencing stepwise remodeling during the evolution of mole-rats, such as the insulin and hypoxia response pathways. Third, we report nonorthologous regulatory elements overlap with lineage-specific repetitive elements and appear to modify metabolic pathways by rewiring of HNF4 and RAR/RXR transcription factor binding sites in mole-rats. These comparative analyses reveal how mole-rat regulatory evolution informs previously reported phenotypic adaptations. Moreover, the phylogenetic modeling framework we propose here improves upon the state of the art by addressing known limitations of inter-species comparisons of epigenomic profiles and has broad implications in the field of comparative functional genomics.


Assuntos
Genômica , Sequências Reguladoras de Ácido Nucleico , Animais , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Ratos-Toupeira/genética , Hipóxia
3.
Mol Pain ; 20: 17448069241230420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379503

RESUMO

Ca2+ imaging is frequently used in the investigation of sensory neuronal function and nociception. In vitro imaging of acutely dissociated sensory neurons using membrane-permeant fluorescent Ca2+ indicators remains the most common approach to study Ca2+ signalling in sensory neurons. Fluo4 is a popular choice of single-wavelength indicator due to its brightness, high affinity for Ca2+ and ease of use. However, unlike ratiometric indicators, the emission intensity from single-wavelength indicators can be affected by indicator concentration, optical path length, excitation intensity and detector efficiency. As such, without careful calibration, it can be difficult to draw inferences from differences in the magnitude of Ca2+ transients recorded using Fluo4. Here, we show that a method scarcely used in sensory neurophysiology - first proposed by Maravall and colleagues (2000) - can provide reliable estimates of absolute cytosolic Ca2+ concentration ([Ca2+]cyt) in acutely dissociated sensory neurons using Fluo4. This method is straightforward to implement; is applicable to any high-affinity single-wavelength Ca2+ indicator with a large dynamic range; and provides estimates of [Ca2+]cyt in line with other methods, including ratiometric imaging. Use of this method will improve the granularity of sensory neuron Ca2+ imaging data obtained with Fluo4.


Assuntos
Cálcio , Células Receptoras Sensoriais
4.
Artigo em Inglês | MEDLINE | ID: mdl-38915279

RESUMO

The intestinal barrier plays a crucial role in homeostasis, both by facilitating absorption of nutrients and fluids, and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance. The naked mole-rat has many unusual biological features, including attenuated colonic neuron sensitivity to acid and bradykinin, and resistance to chemical-induced intestinal damage. However, insight into their intestinal barrier physiology is scarce. Here, we observed notable macroscopic and microscopic differences in intestinal tissue structure between naked mole-rats and mice. Moreover, naked mole-rats showed increased number of larger goblet cells and elevated mucus content. In measuring gut permeability, naked mole-rats showed reduced permeability compared to mice, measured as transepithelial electrical resistance, especially in ileum. Furthermore, intestinal ion secretion induced by serotonin, bradykinin, histamine, and capsaicin was significantly reduced in naked mole-rats compared to mice, despite the expression of receptors for all these agonists. In addition, naked mole-rats exhibited reduced pro-secretory responses to the non-selective adenylate cyclase activator forskolin. Collectively, these findings indicate that naked mole-rats possess a robust and hard-to-penetrate gastrointestinal barrier, that is resistant to environmental and endogenous irritants. Naked mole-rats may therefore provide valuable insights into the physiology of the intestinal barrier and set the stage for the development of innovative and effective therapies.

5.
J Cell Physiol ; 238(4): 761-775, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790936

RESUMO

The naked mole-rat (NMR, Heterocephalus glaber) is of significant interest to biogerontological research, rarely developing age-associated diseases, such as cancer. The transmembrane glycoprotein CD44 is upregulated in certain cancers and CD44 cleavage by a disintegrin and metalloproteinase 10 (ADAM10) regulates cellular migration. Here we provide evidence that mature ADAM10 is expressed in NMR primary skin fibroblasts (NPSF), and that ionomycin increases cell surface ADAM10 localization. However, we observed an absence of ADAM10 mediated CD44 cleavage, as well as shedding of exogenous and overexpressed betacellulin in NPSF, whereas in mouse primary skin fibroblasts ionomycin induced ADAM10-dependent cleavage of both CD44 and betacellulin. Overexpressing a hyperactive form of the Ca2+ -dependent phospholipid scramblase ANO6 in NPSF increased phosphatidylserine (PS) externalization, which rescued the ADAM10 sheddase activity and promoted cell migration in NPSF in an ADAM10-dependent manner. These findings suggest that dysregulation of ADAM10 shedding activity is due to a deficient PS externalization in NMR.


Assuntos
Proteína ADAM10 , Fibroblastos , Fosfatidilserinas , Animais , Camundongos , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Betacelulina/metabolismo , Fibroblastos/metabolismo , Ionomicina/farmacologia , Proteínas de Membrana/metabolismo , Ratos-Toupeira , Proteínas de Transferência de Fosfolipídeos
6.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G250-G261, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749569

RESUMO

The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.


Assuntos
Doenças Inflamatórias Intestinais , Dor Visceral , Humanos , Interleucina-13/farmacologia , Nociceptores , Proteínas Quinases p38 Ativadas por Mitógeno , Capsaicina/farmacologia , Colo/inervação
7.
Nucleic Acids Res ; 49(1): 458-478, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33332560

RESUMO

The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth, integrating multiple signalling cues and pathways. Key among the downstream activities of mTOR is the control of the protein synthesis machinery. This is achieved, in part, via the co-ordinated regulation of mRNAs that contain a terminal oligopyrimidine tract (TOP) at their 5'ends, although the mechanisms by which this occurs downstream of mTOR signalling are still unclear. We used RNA-binding protein (RBP) capture to identify changes in the protein-RNA interaction landscape following mTOR inhibition. Upon mTOR inhibition, the binding of LARP1 to a number of mRNAs, including TOP-containing mRNAs, increased. Importantly, non-TOP-containing mRNAs bound by LARP1 are in a translationally-repressed state, even under control conditions. The mRNA interactome of the LARP1-associated protein PABPC1 was found to have a high degree of overlap with that of LARP1 and our data show that PABPC1 is required for the association of LARP1 with its specific mRNA targets. Finally, we demonstrate that mRNAs, including those encoding proteins critical for cell growth and survival, are translationally repressed when bound by both LARP1 and PABPC1.


Assuntos
Autoantígenos/fisiologia , Proteína I de Ligação a Poli(A)/fisiologia , Polirribossomos/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ribonucleoproteínas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Regiões 5' não Traduzidas/genética , Autoantígenos/genética , Regulação da Expressão Gênica , Genes Reporter , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Naftiridinas/farmacologia , Mutação Puntual , Biossíntese de Proteínas/genética , Interferência de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/genética , Antígeno SS-B
8.
Nucleic Acids Res ; 49(6): 3461-3489, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398329

RESUMO

LARP1 is a key repressor of TOP mRNA translation. It binds the m7Gppp cap moiety and the adjacent 5'TOP motif of TOP mRNAs, thus impeding the assembly of the eIF4F complex on these transcripts. mTORC1 controls TOP mRNA translation via LARP1, but the details of the mechanism are unclear. Herein we elucidate the mechanism by which mTORC1 controls LARP1's translation repression activity. We demonstrate that mTORC1 phosphorylates LARP1 in vitro and in vivo, activities that are efficiently inhibited by rapamycin and torin1. We uncover 26 rapamycin-sensitive phospho-serine and -threonine residues on LARP1 that are distributed in 7 clusters. Our data show that phosphorylation of a cluster of residues located proximally to the m7Gppp cap-binding DM15 region is particularly sensitive to rapamycin and regulates both the RNA-binding and the translation inhibitory activities of LARP1. Our results unravel a new model of translation control in which the La module (LaMod) and DM15 region of LARP1, both of which can directly interact with TOP mRNA, are differentially regulated: the LaMod remains constitutively bound to PABP (irrespective of the activation status of mTORC1), while the C-terminal DM15 'pendular hook' engages the TOP mRNA 5'-end to repress translation, but only in conditions of mTORC1 inhibition.


Assuntos
Autoantígenos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas , Ribonucleoproteínas/metabolismo , Motivos de Aminoácidos , Autoantígenos/química , Células HEK293 , Humanos , Naftiridinas/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ribonucleoproteínas/química , Serina/metabolismo , Sirolimo/farmacologia , Treonina/metabolismo , Tirosina/metabolismo , Antígeno SS-B
9.
J Physiol ; 600(16): 3819-3836, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35775903

RESUMO

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.


Assuntos
Nociceptores , Dor Visceral , Animais , Capsaicina/farmacologia , Gânglios Espinais/metabolismo , Camundongos , Nociceptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Canais de Cátion TRPV/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Dor Visceral/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-36251041

RESUMO

The vertebrate vestibular system is crucial for balance and navigation, and the evolution of its form and function in relation to species' lifestyle and mode of locomotion has been the focus of considerable recent study. Most research, however, has concentrated on aboveground mammals, with much less published on subterranean fauna. Here, we explored variation in anatomy and sensitivity of the semicircular canals among 91 mammal species, including both subterranean and non-subterranean representatives. Quantitative phylogenetically informed analyses showed significant widening of the canals relative to radius of curvature in subterranean species. A relative canal width above 0.166 indicates with 95% certainty that a species is subterranean. Fluid-structure interaction modelling predicted that canal widening leads to a substantial increase in canal sensitivity; a reasonably good estimation of the absolute sensitivity is possible based on the absolute internal canal width alone. In addition, phylogenetic comparative modelling and functional landscape exploration revealed repeated independent evolution of increased relative canal width and anterior canal sensitivity associated with the transition to a subterranean lifestyle, providing evidence of parallel adaptation. Our results suggest that living in dark, subterranean tunnels requires good balance and/or navigation skills which may be facilitated by more sensitive semicircular canals.


Assuntos
Mamíferos , Canais Semicirculares , Animais , Filogenia , Canais Semicirculares/anatomia & histologia , Canais Semicirculares/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Locomoção , Adaptação Fisiológica
12.
Adv Exp Med Biol ; 1319: 341-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424524

RESUMO

It is widely accepted that cancer is driven by genetic mutations that confer uncontrolled cell proliferation and tumor formation. For tumors to take hold and grow, cancer cells evolve mechanisms to favorably shape their microenvironment and avoid being cleared by the immune system. Cancer is not unique to human, but rather affects nearly all multicellular organisms albeit to different degrees. The different degrees of cancer susceptibility across the animal kingdom could be attributed to several factors, which have been the subject of several studies in recent years. The naked mole-rat (NMR, Heterocephalus glaber), an exceptionally long-lived rodent, which, as discussed in detail in the next section, displays significant cancer resistance with only a small number of animals being reported to exhibit spontaneous neoplasms. The reason why studying cancer resistance in NMRs is of particular interest is that not only are they now an established laboratory species, but that NMRs are mammals and thus there is great potential for translating knowledge about their cancer resistance into preventing and/or treating cancer in humans and companion animals.


Assuntos
Ratos-Toupeira , Neoplasias , Animais , Proliferação de Células , Neoplasias/genética , Microambiente Tumoral
13.
Adv Exp Med Biol ; 1319: 409-420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424527

RESUMO

The naked mole-rat is a species of growing research interest. Recent focus on this species from both a biomedical and zoological perspective has led to important discoveries regarding eusociality and ecophysiological and sensory traits associated with life below ground as well as natural protection from variable oxygen availability, acid-induced pain, and the vagaries of aging. These features serve to remind us that many foundational discoveries have arisen using extremophilic organisms and elucidating the mechanisms they employ to survive the harsh environmental conditions they encounter. Investigating these evolved features also facilitates a better understanding of several human disease states that share features with this harsh subterranean milieu. Here, we provide an overview of some unanswered questions and future directions to advance this field, alongside discussion of the tools that could facilitate accelerated progression of research using this enigmatic model.


Assuntos
Envelhecimento , Ratos-Toupeira , Animais , Dor
14.
Adv Exp Med Biol ; 1319: 137-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424515

RESUMO

Naked mole-rats share some sensory characteristics with other subterraneans, including lack of object vision, retention of the ability to entrain their circadian rhythm to light, and poor hearing. On the other hand, a characteristic that may be specialized in the naked mole-rat is their exquisite orienting responses to the touch of even a single body vibrissa. They have about 100 whisker-like body vibrissae on their otherwise furless bodies. They are also insensitive to chemical and inflammatory pain, likely an adaptation to living in an atmosphere that is high in carbon dioxide, a result of many respiring individuals driving carbon dioxide accumulation. Naked mole-rats have the highest population density among subterranean mammals. High levels of carbon dioxide cause tissue acidosis and associated pain. Remarkably, naked mole-rats are completely immune to carbon dioxide-induced pulmonary edema. However, they retain the ability to detect acid as a taste (sour). Finally, their ability to smell and discriminate odors is comparable to that of rats and mice, but their vomeronasal organ, associated with sensing pheromones, is extremely small and shows a complete lack of post-natal growth. In this chapter, we review what is known about the sensory systems of the naked mole-rat with emphasis on how they differ from other mammals, and even other subterraneans. More extensive accounts of the naked mole-rat's auditory and pain systems can be found in other chapters of this book.


Assuntos
Ratos-Toupeira , Dor , Adaptação Fisiológica , Animais , Audição , Vibrissas
15.
Adv Exp Med Biol ; 1319: 197-220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424517

RESUMO

The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain-insensitivity as a trait shared by several closely related African mole-rat species. In this chapter we will show how African mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.


Assuntos
Ratos-Toupeira , Dor , Animais , Capsaicina , Longevidade , Ratos-Toupeira/genética
16.
Adv Exp Med Biol ; 1319: 255-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424519

RESUMO

Naked mole-rats are extremely tolerant to low concentrations of oxygen (hypoxia) and high concentrations of carbon dioxide (hypercapnia), which is consistent with the environment that they inhabit. Naked mole-rats combine subterranean living with living in very densely populated colonies where oxygen becomes depleted and carbon dioxide accumulates. In the laboratory, naked mole-rats fully recover from 5 h exposure to 5% O2 and 5 h exposure to 80% CO2, whereas both conditions are rapidly lethal to similarly sized laboratory mice. During anoxia (0% O2) naked mole-rats enter a suspended animation-like state and switch from aerobic metabolism of glucose to anaerobic metabolism of fructose. Additional fascinating characteristics include that naked mole-rats show intrinsic brain tolerance to anoxia; a complete lack of hypoxia-induced and CO2-induced pulmonary edema; and reduced aversion to high concentrations of CO2 and acidic fumes. Here we outline a constellation of physiological and molecular adaptations that correlate with the naked mole-rat's hypoxic/hypercapnic tolerance and which offer potential targets for ameliorating pathological conditions in humans, such as the damage caused during cerebral ischemia.


Assuntos
Hipercapnia , Ratos-Toupeira , Adaptação Fisiológica , Animais , Hipóxia , Camundongos , Oxigênio
17.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638832

RESUMO

The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Lisossomos/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/genética , Ratos , Receptores Histamínicos H1/genética , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética
18.
Biochem Biophys Res Commun ; 529(4): 1151-1157, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819579

RESUMO

The long-living naked mole-rat (NMR) shows negligible senescence and resistance to age-associated diseases. Recent evidence, based on protein-level assays, suggests that enhanced protein homeostasis machinery contributes to NMR stress-resistance and longevity. Here, we develop NMR-specific, transcriptional assays for measuring the unfolded protein response (UPR), a component of ER proteostasis. By varying doses and response times of pharmacological ER stressors applied to NMR kidney fibroblasts, we probe the NMR UPR in detail, demonstrating that NMR fibroblasts have a higher UPR activation threshold compared to mouse fibroblasts under mild ER-stress induction; whereas temporal analysis reveals that severe ER-stress induction results in no comparative differences. Probing NMR UPR activation with our robust assays may lead to insights into the proteostasis and ageing relationship.


Assuntos
Longevidade , Ratos-Toupeira/fisiologia , Resposta a Proteínas não Dobradas , Animais , Apoptose , Células Cultivadas , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Rim/patologia , Masculino , Camundongos , Ratos-Toupeira/genética , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA/genética , Proteína 1 de Ligação a X-Box/metabolismo
19.
Rheumatology (Oxford) ; 59(3): 662-667, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31410487

RESUMO

OBJECTIVES: Knee OA is a leading global cause of morbidity. This study investigates the effects of knee SF from patients with OA on the activity of dorsal root ganglion sensory neurons that innervate the knee (knee neurons) as a novel translational model of disease-mediated nociception in human OA. METHODS: Dissociated cultures of mouse knee neurons were incubated overnight or acutely stimulated with OA-SF (n = 4) and fluid from healthy donors (n = 3, Ctrl-SF). Electrophysiology and Ca2+-imaging determined changes in electrical excitability and transient receptor potential channel function, respectively. RESULTS: Incubation with OA-SF induced knee neuron hyperexcitability compared to Ctrl-SF: the resting membrane potential significantly increased (F(2, 92) = 5.6, P = 0.005, ANOVA) and the action potential threshold decreased (F(2, 92) = 8.8, P = 0.0003, ANOVA); TRPV1 (F(2, 445) = 3.7, P = 0.02) and TRPM8 (F(2, 174) = 11.1, P < 0.0001, ANOVA) channel activity also increased. Acute application of Ctrl-SF and OA-SF increased intracellular Ca2+ concentration via intra- and extracellular Ca2+ sources. CONCLUSION: Human OA-SF acutely activated knee neurons and induced hyperexcitability indicating that mediators present in OA-SF stimulate sensory nerve activity and thereby give rise to knee pain. Taken together, this study provides proof-of-concept for a new method to study the ability of mediators present in joints of patients with arthritis to stimulate nociceptor activity and hence identify clinically relevant drug targets for treating knee pain.


Assuntos
Artralgia/fisiopatologia , Gânglios Espinais/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Líquido Sinovial , Animais , Feminino , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Camundongos
20.
Artigo em Inglês | MEDLINE | ID: mdl-32206859

RESUMO

The naked mole-rat (Heterocephalus glaber) is famous for its longevity and unusual physiology. This eusocial species that lives in highly ordered and hierarchical colonies with a single breeding queen, also discovered secrets enabling somewhat pain-free living around 20 million years ago. Unlike most mammals, naked mole-rats do not feel the burn of chili pepper's active ingredient, capsaicin, nor the sting of acid. Indeed, by accumulating mutations in genes encoding proteins that are only now being exploited as targets for new pain therapies (the nerve growth factor receptor TrkA and voltage-gated sodium channel, NaV1.7), this species mastered the art of analgesia before humans evolved. Recently, we have identified pain insensitivity as a trait shared by several closely related African mole-rat species. One of these African mole-rats, the Highveld mole-rat (Cryptomys hottentotus pretoriae), is uniquely completely impervious and pain free when confronted with electrophilic compounds that activate the TRPA1 ion channel. The Highveld mole-rat has evolved a biophysical mechanism to shut down the activation of sensory neurons that drive pain. In this review, we will show how mole-rats have evolved pain insensitivity as well as discussing what the proximate factors may have been that led to the evolution of pain-free traits.


Assuntos
Comportamento Animal , Evolução Molecular , Ratos-Toupeira/metabolismo , Nociceptores/metabolismo , Percepção da Dor , Limiar da Dor , Dor/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Ratos-Toupeira/genética , Dor/genética , Dor/fisiopatologia , Transdução de Sinais , Especificidade da Espécie , Canal de Cátion TRPA1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA