Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1185: 419-423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884648

RESUMO

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that lead to the gradual loss of vision in and around the macular area. There are no treatments for patients suffering from bestrophinopathies, and no measures can be taken to prevent visual deterioration in those who have inherited disease-causing mutations. Bestrophinopathies are caused by mutations in the Bestrophin1 gene (BEST1), a protein found exclusively in the retinal pigment epithelial (RPE) cells of the eye. Mutations in BEST1 affect the function of the RPE leading to the death of overlying retinal cells and subsequent vision loss. The pathogenic mechanisms arising from BEST1 mutations are still not fully understood, and it is not clear how mutations in BEST1 lead to diseases with distinct clinical features. This chapter discusses BEST1, the use of model systems to investigate the effects of mutations and the potential to investigate individual bestrophinopathies using induced pluripotent stem cells.


Assuntos
Bestrofinas/genética , Células-Tronco Pluripotentes Induzidas , Doenças Retinianas/genética , Canais de Cloreto , Proteínas do Olho , Humanos , Mutação , Epitélio Pigmentado da Retina/citologia
2.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38260544

RESUMO

Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA production and consumption are highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. In this work, we engineer an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). We biochemically characterize the sensor and demonstrate its selectivity for acetyl-CoA over other CoA species. We then deploy the biosensor in E. coli and HeLa cells to demonstrate its utility in living cells. In E. coli, we show that the biosensor enables detection of rapid changes in acetyl-CoA levels. In human cells, we show that the biosensor enables subcellular detection and reveals the compartmentalization of acetyl-CoA metabolism.

3.
Biochemistry ; 50(39): 8342-51, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21879722

RESUMO

Mitochondrial-nuclear communication is critical for maintaining mitochondrial activity under stress conditions. Adaptation of the mitochondrial-nuclear network to changes in the intracellular oxidation and reduction milieu is critical for the survival of retinal and retinal pigment epithelial (RPE) cells, in relation to their high oxygen demand and rapid metabolism. However, the generation and transmission of the mitochondrial signal to the nucleus remain elusive. Previously, our in vivo study revealed that prohibitin is upregulated in the retina, but downregulated in RPE cells in the aging and diabetic model. In this study, the functional role of prohibitin in the retina and RPE cells was examined using biochemical methods, including a lipid binding assay, two-dimensional gel electrophoresis, immunocytochemistry, Western blotting, and a knockdown approach. Protein depletion by siRNA characterized prohibitin as an anti-apoptotic molecule in mitochondria, while the lipid binding assay demonstrated subcellular communication between mitochondria and the nucleus under oxidative stress. The changes in the expression and localization of mitochondrial prohibitin triggered by reactive oxygen species are crucial for mitochondrial integrity. We propose that prohibitin shuttles between mitochondria and the nucleus as an anti-apoptotic molecule and a transcriptional regulator in a stress environment in the retina and RPE cells.


Assuntos
Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Epitélio Pigmentado Ocular/metabolismo , Proteínas Repressoras/fisiologia , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Cardiolipinas/metabolismo , Bovinos , Linhagem Celular , Humanos , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/fisiologia , Proibitinas , Retina/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Ther Adv Ophthalmol ; 13: 2515841421997191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738427

RESUMO

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 (BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA