Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 121(1): 177-187, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517061

RESUMO

Sudden unexpected death in epilepsy (SUDEP) is among the leading causes of death in people with epilepsy. Individuals with temporal lobe epilepsy (TLE) have a high risk for SUDEP because the seizures are often medically intractable. Neurons in the nucleus tractus solitarii (NTS) have been implicated in mouse models of SUDEP and play a critical role in modulating cardiorespiratory and autonomic output. Increased neuronal excitability of inhibitory, GABAergic neurons in the NTS develops during epileptogenesis, and NTS dysfunction has been implicated in mouse models of SUDEP. In this study we used the pilocarpine-induced status epilepticus model of TLE (i.e., pilo-SE mice) to investigate the A-type voltage-gated K+ channel as a potential contributor to increased excitability in GABAergic NTS neurons during epileptogenesis. Compared with age-matched control mice, pilo-SE mice displayed an increase in spontaneous action potential frequency and half-width 9-12 wk after treatment. Activity of GABAergic NTS neurons from pilo-SE mice showed less sensitivity to 4-aminopyridine. Correspondingly, reduced A-type K+ current amplitude was detected in these neurons, with no change in activation or inactivation kinetics. No changes were observed in Kv4.1, Kv4.2, Kv4.3, KChIP1, KChIP3, or KChIP4 mRNA expression. These changes contribute to the increased excitability in GABAergic NTS neurons that develops in TLE and may provide insight into potential mechanisms contributing to the increased risk for cardiorespiratory collapse and SUDEP in this model. NEW & NOTEWORTHY Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in epilepsy, and dysfunction in central autonomic neurons may play a role. In a mouse model of acquired epilepsy, GABAergic neurons in the nucleus tractus solitarii developed a reduced amplitude of the A-type current, which contributes to the increased excitability seen in these neurons during epileptogenesis. Neuronal excitability changes in inhibitory central vagal circuitry may increase the risk for cardiorespiratory collapse and SUDEP.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Núcleo Solitário/metabolismo , Estado Epiléptico/metabolismo , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Síndrome de Brugada/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Transgênicos , Pilocarpina , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/metabolismo , Núcleo Solitário/efeitos dos fármacos , Técnicas de Cultura de Tecidos
2.
Front Syst Neurosci ; 16: 867323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694044

RESUMO

Type A GABA receptors (GABAARs) are pentameric combinations of protein subunits that give rise to tonic (ITonicGABA) and phasic (i.e., synaptic; ISynapticGABA) forms of inhibitory GABAAR signaling in the central nervous system. Remodeling and regulation of GABAAR protein subunits are implicated in a wide variety of healthy and injury-dependent states, including epilepsy. The present study undertook a detailed analysis of GABAAR signaling using whole-cell patch clamp recordings from mouse dentate granule cells (DGCs) in coronal slices containing dorsal hippocampus at 1-2 or 8-13 weeks after a focal, controlled cortical impact (CCI) or sham brain injury. Zolpidem, a benzodiazepine-like positive modulator of GABAARs, was used to test for changes in GABAAR signaling of DGCs due to its selectivity for α1 subunit-containing GABAARs. Electric charge transfer and statistical percent change were analyzed in order to directly compare tonic and phasic GABAAR signaling and to account for zolpidem's ability to modify multiple parameters of GABAAR kinetics. We observed that baseline ITonicGABA is preserved at both time-points tested in DGCs ipsilateral to injury (Ipsi-DGCs) compared to DGCs contralateral to injury (Contra-DGCs) or after sham injury (Sham-DGCs). Interestingly, application of zolpidem resulted in modulation of ITonicGABA across groups, with Ipsi-DGCs exhibiting the greatest responsiveness to zolpidem. We also report that the combination of CCI and acute application of zolpidem profoundly augments the proportion of GABAAR charge transfer mediated by tonic vs. synaptic currents at both time-points tested, whereas gene expression of GABAAR α1, α2, α3, and γ2 subunits is unchanged at 8-13 weeks post-injury. Overall, this work highlights the shift toward elevated influence of tonic inhibition in Ipsi-DGCs, the impact of zolpidem on all components of inhibitory control of DGCs, and the sustained nature of these changes in inhibitory tone after CCI injury.

3.
Sci Rep ; 9(1): 2722, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804396

RESUMO

Neurons in the brainstem dorsal vagal complex integrate neural and humoral signals to coordinate autonomic output to viscera that regulate a variety of physiological functions, but how this circuitry regulates metabolism is murky. We tested the hypothesis that premotor, GABAergic neurons in the nucleus tractus solitarius (NTS) form a hindbrain micro-circuit with preganglionic parasympathetic motorneurons of the dorsal motor nucleus of the vagus (DMV) that is capable of modulating systemic blood glucose concentration. In vitro, neuronal activation or inhibition using either excitatory or inhibitory designer receptor exclusively activated by designer drugs (DREADDs) constructs expressed in GABAergic NTS neurons increased or decreased, respectively, action potential firing of GABAergic NTS neurons and downstream synaptic inhibition of the DMV. In vivo, DREADD-mediated activation of GABAergic NTS neurons increased systemic blood glucose concentration, whereas DREADD-mediated silencing of these neurons was without effect. The DREADD-induced hyperglycemia was abolished by blocking peripheral muscarinic receptors, consistent with the hypothesis that altered parasympathetic drive mediated the response. This effect was paralleled by elevated serum glucagon and hepatic phosphoenolpyruvate carboxykinase 1 (PEPCK1) expression, without affecting insulin levels or muscle metabolism. Activity in a hindbrain inhibitory microcircuit is sufficient to modulate systemic glucose concentration, independent of insulin secretion or utilization.


Assuntos
Glucose/metabolismo , Potenciais Pós-Sinápticos Inibidores , Rombencéfalo/fisiologia , Nervo Vago/fisiologia , Animais , Glicemia/metabolismo , Neurônios GABAérgicos/metabolismo , Hiperglicemia/metabolismo , Camundongos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Rombencéfalo/citologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA