RESUMO
Intervertebral disc degeneration is a leading cause of chronic low back pain. Cell-based strategies that seek to treat disc degeneration by regenerating the central nucleus pulposus (NP) hold significant promise, but key challenges remain. One of these is the inability of therapeutic cells to effectively mimic the performance of native NP cells, which are unique amongst skeletal cell types in that they arise from the embryonic notochord. In this study, we use single cell RNA sequencing to demonstrate emergent heterogeneity amongst notochord-derived NP cells in the postnatal mouse disc. Specifically, we established the existence of progenitor and mature NP cells, corresponding to notochordal and chondrocyte-like cells, respectively. Mature NP cells exhibited significantly higher expression levels of extracellular matrix (ECM) genes including aggrecan, and collagens II and VI, along with elevated transforming growth factor-beta and phosphoinositide 3 kinase-protein kinase B signaling. Additionally, we identified Cd9 as a novel surface marker of mature NP cells, and demonstrated that these cells were localized to the NP periphery, increased in numbers with increasing postnatal age, and co-localized with emerging glycosaminoglycan-rich matrix. Finally, we used a goat model to show that Cd9+ NP cell numbers decrease with moderate severity disc degeneration, suggesting that these cells are associated with maintenance of the healthy NP ECM. Improved understanding of the developmental mechanisms underlying regulation of ECM deposition in the postnatal NP may inform improved regenerative strategies for disc degeneration and associated low back pain.
Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Núcleo Pulposo , Camundongos , Animais , Núcleo Pulposo/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Notocorda/metabolismo , Dor Lombar/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Análise de Sequência de RNARESUMO
Mucopolysaccharidosis I is a lysosomal storage disorder characterized by deficient alpha-L-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a critical need for improved understanding of joint disease pathophysiology in MPS I, including specific biomarkers to predict and monitor joint disease progression, and response to treatment. The objective of this study was to leverage the naturally-occurring MPS I canine model and undertake an unbiased proteomic screen to identify systemic biomarkers predictive of local joint disease in MPS I. Synovial fluid and serum samples were collected from MPS I and healthy dogs at 12 months-of-age, and protein abundance characterized using liquid chromatography tandem mass spectrometry. Stifle joints were evaluated postmortem using magnetic resonance imaging (MRI) and histology. Proteomics identified 40 proteins for which abundance was significantly correlated between serum and synovial fluid, including markers of inflammatory joint disease and lysosomal dysfunction. Elevated expression of three biomarker candidates, matrix metalloproteinase 19, inter-alpha-trypsin inhibitor heavy-chain 3 and alpha-1-microglobulin, was confirmed in MPS I cartilage, and serum abundance of these molecules was found to correlate with MRI and histological degenerative grades. The candidate biomarkers identified have the potential to improve patient care by facilitating minimally-invasive, specific assessment of joint disease progression and response to therapeutic intervention.
Assuntos
Artropatias , Mucopolissacaridose I , Cães , Animais , Mucopolissacaridose I/patologia , Proteômica , Qualidade de Vida , Artropatias/metabolismo , Líquido Sinovial/metabolismo , Biomarcadores/metabolismo , Progressão da DoençaRESUMO
PURPOSE: Bullying, harassment, and discrimination (BHD) are prevalent in academic, scientific, and clinical departments, particularly orthopedic surgery, and can have lasting effects on victims. As it is unclear how BHD affects musculoskeletal (MSK) researchers, the following study assessed BHD in the MSK research community and whether the COVID-19 pandemic, which caused hardships in other industries, had an impact. METHODS: A web-based anonymous survey was developed in English by ORS Spine Section members to assess the impact of COVID-19 on MSK researchers in North America, Europe, and Asia, which included questions to evaluate the personal experience of researchers regarding BHD. RESULTS: 116 MSK researchers completed the survey. Of respondents, 34.5% (n = 40) focused on spine, 30.2% (n = 35) had multiple areas of interest, and 35.3% (n = 41) represented other areas of MSK research. BHD was observed by 26.7% (n = 31) of respondents and personally experienced by 11.2% (n = 13), with mid-career faculty both observing and experiencing the most BHD. Most who experienced BHD (53.8%, n = 7) experienced multiple forms. 32.8% (n = 38) of respondents were not able to speak out about BHD without fear of repercussions, with 13.8% (n = 16) being unsure about this. Of those who observed BHD, 54.8% (n = 17) noted that the COVID-19 pandemic had no impact on their observations. CONCLUSIONS: To our knowledge, this is the first study to address the prevalence and determinants of BHD among MSK researchers. MSK researchers experienced and observed BHD, while many were not comfortable reporting and discussing violations to their institution. The COVID-19 pandemic had mixed-effects on BHD. Awareness and proactive policy changes may be warranted to reduce/eliminate the occurrence of BHD in this community.
Assuntos
Bullying , COVID-19 , Assédio Sexual , Humanos , COVID-19/epidemiologia , Pandemias , Inquéritos e QuestionáriosRESUMO
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient ß-glucuronidase activity, leading to accumulation of incompletely degraded heparan, dermatan and chondroitin sulfate glycosaminoglycans. Patients with MPS VII exhibit progressive spinal deformity, which decreases quality of life. Previously, we demonstrated that MPS VII dogs exhibit impaired initiation of secondary ossification in the vertebrae and long bones. The objective of this study was to build on these findings and comprehensively characterize how vertebral bone disease manifests progressively in MPS VII dogs throughout postnatal growth. Vertebrae were collected postmortem from MPS VII and healthy control dogs at seven ages ranging from 9 to 365 days. Microcomputed tomography and histology were used to characterize bone properties in primary and secondary ossification centers. Serum was analyzed for bone turnover biomarkers. Results demonstrated that not only was secondary ossification delayed in MPS VII vertebrae, but that it progressed aberrantly and was markedly diminished even at 365 days-of-age. Within primary ossification centers, bone volume fraction and bone mineral density were significantly lower in MPS VII at 180 and 365 days-of-age. MPS VII growth plates exhibited significantly lower proliferative and hypertrophic zone cellularity at 90 days-of-age, while serum bone-specific alkaline phosphatase (BAP) was significantly lower in MPS VII dogs at 180 days-of-age. Overall, these findings establish that vertebral bone formation is significantly diminished in MPS VII dogs in both primary and secondary ossification centers during postnatal growth.
Assuntos
Doenças Ósseas/fisiopatologia , Progressão da Doença , Mucopolissacaridose VII/complicações , Coluna Vertebral/patologia , Animais , Animais Recém-Nascidos , Doenças Ósseas/genética , Osso e Ossos/patologia , Cães , Feminino , Crescimento e Desenvolvimento , Masculino , Mucopolissacaridose VII/genética , OsteogêneseRESUMO
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Abnormal development of the vertebrae and long bones is a hallmark of skeletal disease in several MPS subtypes; however, the underlying cellular mechanisms remain poorly understood. The objective of this study was to conduct an ultrastructural examination of how lysosomal storage differentially affects major skeletal cell types in MPS I and VII using naturally occurring canine disease models. We showed that both bone and cartilage cells from MPS I and VII dog vertebrae exhibit significantly elevated storage from early in postnatal life, with storage generally greater in MPS VII than MPS I. Storage was most striking for vertebral osteocytes, occupying more than forty percent of cell area. Secondary to storage, dilation of the rough endoplasmic reticulum (ER), a marker of ER stress, was observed most markedly in MPS I epiphyseal chondrocytes. Significantly elevated immunostaining of light chain 3B (LC3B) in MPS VII epiphyseal chondrocytes suggested impaired autophagy, while significantly elevated apoptotic cell death in both MPS I and VII chondrocytes was also evident. The results of this study provide insights into how lysosomal storage differentially effects major skeletal cell types in MPS I and VII, and suggests a potential relationship between storage, ER stress, autophagy, and cell death in the pathogenesis of MPS skeletal defects.
Assuntos
Condrócitos/ultraestrutura , Mucopolissacaridose I/patologia , Mucopolissacaridose VII/patologia , Osteócitos/ultraestrutura , Vértebras Torácicas/ultraestrutura , Animais , Animais Recém-Nascidos , Autofagia , Estudos de Casos e Controles , Modelos Animais de Doenças , Cães , Retículo Endoplasmático/ultraestrutura , Feminino , MasculinoRESUMO
Purpose: Mucopolysaccharidosis (MPS) VII is a genetic, lysosomal storage disease characterized by abnormal accumulation of glycosaminoglycans in cells and tissues. MPS VII patients exhibit multiple failures of endochondral ossification during postnatal growth, including markedly delayed cartilage-to-bone conversion in the vertebrae and long bones. Cartilage canals provide the template for vascularization at the onset of secondary ossification. The objective of this study was to investigate whether abnormal cartilage canal architecture and enzyme-mediated extracellular matrix (ECM) remodeling contribute to delayed cartilage-to-bone conversion in MPS VII.Materials and Methods: The epiphyseal cartilage canal networks of 9-day-old healthy control and MPS VII-affected dog vertebrae were characterized using high-resolution, contrast-free quantitative susceptibility mapping magnetic resonance imaging. Relative expression levels of matrix metalloproteinases (MMPs) 9, 13 and 14 were examined using immunohistochemistry, while tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were examined using in situ enzyme staining.Results: Interestingly, the density, number, connectivity and thickness of cartilage canals was not significantly different between MPS VII and control vertebrae. Immunohistochemistry revealed diminished MMP-9, but normal MMP-13 and 14 expression by epiphyseal cartilage chondrocytes, while ALP and TRAP enzyme expression by chondrocytes and chondroclasts, respectively, were both diminished in MPS VII.Conclusions: Our findings suggest that while the epiphyseal cartilage canal network in MPS VII is normal at the onset of secondary ossification, expression of enzymes required for cartilage resorption and replacement with mineralized ECM, and initiation of angiogenesis, is impaired.
Assuntos
Doenças Ósseas , Mucopolissacaridose VII , Animais , Cães , Matriz Extracelular/patologia , Lâmina de Crescimento , Humanos , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/patologia , OsteogêneseRESUMO
OBJECTIVE: Our objective was to determine the impact of total preincision infusion time on surgical site infections (SSIs) and establish an optimal time threshold for subsequent prospective study. BACKGROUND: SSIs remain a major cause of morbidity. Although regulated, the total time of infusion of preincision antibiotics varies widely. Impact of infusion time on SSI risk is poorly understood. METHODS: All consecutive patients (n = 46,791) undergoing inpatient surgical intervention were retrospectively enrolled (2014-2015) and monitored for 1 year. Primary outcomes: the presence of SSI infection as predicted by reduced preoperative antibiotic infusion time. SECONDARY OUTCOMES: preintervention compliance, the impact of a quality improvement algorithm to optimize infusion time compliance. Multivariate logistic regression of the retrospective cohort demonstrated predictors of infection. Receiver-operating characteristic analysis demonstrated the timing threshold predictive of infection. Cost impact of avoidable infections was analyzed. RESULTS: Only 36.1% of patients received preincision infusion of vancomycin in compliance with national and institutional standards (60-120âmin). Cephalosporin infusion times were 53 times more likely to be compliant [odds ratio (OR) 53.33, P < 0.001]. Vancomycin infusion times that were not compliant with national standards (less than standard 60-120âmin) did not predict infection. However, significantly noncompliant, reduced preincision infusion time, significantly predicted SSI (<24.6âmin infusion, AUC = 0.762). Vancomycin infusion, initiated too close to surgical incision, predicted increased SSI (OR = 4.281, P < 0.001). Implementation of an algorithm to improve infusion time, but not powered to demonstrate infection /reduction, improved vancomycin infusion start time (257% improvement, P < 0.001) and eliminated high-risk infusions (sub-24.6âmin). CONCLUSIONS: Initially, vancomycin infusion rarely met national guidelines; however, minimal compliance breach was not associated with SSI implications. The retrospective data here suggest a critical infusion time for infection reduction (24.6 min before incision). Prospective implementation of an algorithm led to 100% compliance. These data suggest that vancomycin administration timing should be studied prospectively.
Assuntos
Antibacterianos/administração & dosagem , Antibioticoprofilaxia , Infecção da Ferida Cirúrgica/prevenção & controle , Adulto , Algoritmos , Cefazolina/administração & dosagem , Feminino , Humanos , Infusões Intravenosas , Masculino , Pennsylvania , Melhoria de Qualidade , Estudos Retrospectivos , Fatores de Tempo , Vancomicina/administração & dosagemRESUMO
PURPOSE OF REVIEW: The mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders characterized by abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. MPS patients frequently exhibit failures of endochondral ossification during postnatal growth leading to skeletal deformity and short stature. In this review, we outline the current understanding of the cellular and molecular mechanisms underlying failures of endochondral ossification in MPS and discuss associated treatment challenges and opportunities. RECENT FINDINGS: Studies in MPS patients and animal models have demonstrated that skeletal cells and tissues exhibit significantly elevated GAG storage from early in postnatal life and that this is associated with impaired cartilage-to-bone conversion in primary and secondary ossification centers, and growth plate dysfunction. Recent studies have begun to elucidate the underlying cellular and molecular mechanisms, including impaired chondrocyte proliferation and hypertrophy, diminished growth factor signaling, disrupted cell cycle progression, impaired autophagy, and increased cell stress and apoptosis. Current treatments such as hematopoietic stem cell transplantation and enzyme replacement therapy fail to normalize endochondral ossification in MPS. Emerging treatments including gene therapy and small molecule-based approaches hold significant promise in this regard. Failures of endochondral ossification contribute to skeletal deformity and short stature in MPS patients, increasing mortality and reducing quality of life. Early intervention is crucial for effective treatment, and there is a critical need for new approaches that normalize endochondral ossification by directly targeting affected cells and signaling pathways.
Assuntos
Doenças Ósseas/etiologia , Mucopolissacaridoses/complicações , Animais , Doenças Ósseas/fisiopatologia , Doenças Ósseas/terapia , Transtornos do Crescimento/etiologia , Transtornos do Crescimento/fisiopatologia , Humanos , Mucopolissacaridoses/fisiopatologia , Mucopolissacaridoses/terapiaRESUMO
Mucopolysaccharidosis Type VII (MPS7, also called ß-glucuronidase deficiency or Sly syndrome; MIM 253220) is an extremely rare autosomal recessive lysosomal storage disease, caused by mutations in the GUSB gene. ß-glucuronidase (GUSB) is a lysosomal hydrolase involved in the stepwise degradation of glucuronic acid-containing glycosaminoglycans (GAGs). Patients affected with MPS VII are not able to completely degrade glucuronic acid-containing GAGs, including chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and heparan sulfate. The accumulation of these GAGs in lysosomes of various tissues leads to cellular and organ dysfunctions. Characteristic features of MPS VII include short stature, macrocephaly, hirsutism, coarse facies, hearing loss, cloudy cornea, short neck, valvular cardiac defects, hepatosplenomegaly, and dysostosis multiplex. Oral manifestations in patients affected with MPS VII have never been reported. Oral manifestations observed in three patients consist of wide root canal spaces, taurodontism, hyperplastic dental follicles, malposition of unerupted permanent molars, and failure of tooth eruption with malformed roots. The unusual skeletal features of the patients include maxillary hypoplasia, hypoplastic midface, long mandibular length, mandibular prognathism, hypoplastic and aplastic mandibular condyles, absence of the dens of the second cervical vertebra, and erosion of the cortex of the lower border of mandibles. Dogs affected with MPS VII had anterior and posterior open bite, maxillary hypoplasia, premolar crowding, and mandibular prognathism. Unlike patients with MPS VII, the dogs had unremarkable mandibular condyles. This is the first report of oral manifestations in patients affected with MPS VII.
Assuntos
Doenças do Cão/diagnóstico , Anormalidades da Boca/diagnóstico , Mucopolissacaridose VII/diagnóstico , Fenótipo , Adolescente , Animais , Criança , Doenças do Cão/genética , Cães , Fácies , Feminino , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Lactente , Modelos Moleculares , Mucopolissacaridose VII/genética , Conformação Proteica , Radiografia , Relação Estrutura-Atividade , Tomografia Computadorizada por Raios XRESUMO
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Assuntos
Sinalização do Cálcio , Condrócitos/metabolismo , Fibrocartilagem/metabolismo , Mecanotransdução Celular , Proteoglicanas/metabolismo , Estresse Mecânico , Adulto , Idoso , Animais , Bovinos , Células Cultivadas , Feminino , Fibrocartilagem/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Engenharia Tecidual , Suporte de CargaRESUMO
The mucopolysaccharidoses (MPS) are a family of lysosomal storage disorders characterized by deficient activity of enzymes that degrade glycosaminoglycans (GAGs). Skeletal disease is common in MPS patients, with the severity varying both within and between subtypes. Within the spectrum of skeletal disease, spinal manifestations are particularly prevalent. Developmental and degenerative abnormalities affecting the substructures of the spine can result in compression of the spinal cord and associated neural elements. Resulting neurological complications, including pain and paralysis, significantly reduce patient quality of life and life expectancy. Systemic therapies for MPS, such as hematopoietic stem cell transplantation and enzyme replacement therapy, have shown limited efficacy for improving spinal manifestations in patients and animal models. Therefore, there is a pressing need for new therapeutic approaches that specifically target this debilitating aspect of the disease. In this review, we examine how pathological abnormalities affecting the key substructures of the spine - the discs, vertebrae, odontoid process and dura - contribute to the progression of spinal deformity and symptomatic compression of neural elements. Specifically, we review current understanding of the underlying pathophysiology of spine disease in MPS, how the tissues of the spine respond to current clinical and experimental treatments, and discuss future strategies for improving the efficacy of these treatments.
Assuntos
Glicosaminoglicanos/metabolismo , Mucopolissacaridoses/fisiopatologia , Doenças da Coluna Vertebral/fisiopatologia , Terapia de Reposição de Enzimas , Humanos , Mucopolissacaridoses/terapia , Qualidade de Vida , Doenças da Coluna Vertebral/terapia , Coluna Vertebral/fisiopatologiaRESUMO
Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient ß-glucuronidase activity, which leads to the accumulation of incompletely degraded glycosaminoglycans (GAGs). MPS VII patients present with severe skeletal abnormalities, which are particularly prevalent in the spine. Incomplete cartilage-to-bone conversion in MPS VII vertebrae during postnatal development is associated with progressive spinal deformity and spinal cord compression. The objectives of this study were to determine the earliest postnatal developmental stage at which vertebral bone disease manifests in MPS VII and to identify the underlying cellular basis of impaired cartilage-to-bone conversion, using the naturally-occurring canine model. Control and MPS VII dogs were euthanized at 9 and 14 days-of-age, and vertebral secondary ossification centers analyzed using micro-computed tomography, histology, qPCR, and protein immunoblotting. Imaging studies and mRNA analysis of bone formation markers established that secondary ossification commences between 9 and 14 days in control animals, but not in MPS VII animals. mRNA analysis of differentiation markers revealed that MPS VII epiphyseal chondrocytes are unable to successfully transition from proliferation to hypertrophy during this critical developmental window. Immunoblotting demonstrated abnormal persistence of Sox9 protein in MPS VII cells between 9 and 14 days-of-age, and biochemical assays revealed abnormally high intra and extracellular GAG content in MPS VII epiphyseal cartilage at as early as 9 days-of-age. In contrast, assessment of vertebral growth plates and primary ossification centers revealed no significant abnormalities at either age. The results of this study establish that failed vertebral bone formation in MPS VII can be traced to the failure of epiphyseal chondrocytes to undergo hypertrophic differentiation at the appropriate developmental stage, and suggest that aberrant processing of Sox9 protein may contribute to this cellular dysfunction. These results also highlight the importance of early diagnosis and therapeutic intervention to prevent the progression of debilitating skeletal disease in MPS patients.
Assuntos
Condrócitos/citologia , Epífises/citologia , Mucopolissacaridose VII/complicações , Mucopolissacaridose VII/fisiopatologia , Osteogênese , Animais , Doenças Ósseas/etiologia , Doenças Ósseas/fisiopatologia , Diferenciação Celular , Cães , Glicosaminoglicanos/metabolismo , Humanos , Hipertrofia , Coluna Vertebral/fisiologia , Microtomografia por Raio-XRESUMO
BACKGROUND: Scoliosis causes abnormal spinal curvature and torsional rotation of the vertebrae and has implications for human suffering and societal cost. In differential geometry, Writhe describes three-dimensional curvature. Differential geometric quantities can inform better diagnostic metrics of scoliotic deformity. This evaluation could help physicians and researchers study scoliosis and determine treatments. METHODS: Eight adult lumbar spine CT scans were analyzed in custom MATLAB programs to estimate Writhe and Cobb angle. Five patients exhibited scoliotic curvature, and three controls were asymptomatic. Vertebral centroids in three-dimensional space were determined, and Writhe was approximated. A T-test determined whether the affected spines had greater Writhe than the controls. Cohen's D test was used to determine effect size. RESULTS: Writhe of scoliotic spines (5.4E-4 ± 2.7E-4) was significantly higher than non-scoliotic spines (8.2E-5 ± 1.1E-4; p = 0.008). CONCLUSION: Writhe, a measure of curvature derived from 3D imaging, is significantly greater in scoliotic than in non-scoliotic spines. Future directions must include more subjects and examine writhe as a marker of scoliosis severity, progression, and response to treatment.
Assuntos
Escoliose , Adulto , Humanos , Escoliose/diagnóstico por imagem , Coluna Vertebral , Imageamento Tridimensional/métodos , PrevisõesRESUMO
Mucopolysaccharidosis (MPS) I is a lysosomal storage disorder characterized by deficient alpha-l-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a strong clinical need for improved treatment approaches that specifically target joint tissues; however, their development is hampered by poor understanding of underlying disease pathophysiology, including how pathological changes to component tissues contribute to overall joint dysfunction. Ligaments and tendons, in particular, have received very little attention, despite the critical roles of these tissues in joint stability and biomechanical function. The goal of this study was to leverage the naturally canine model to undertake functional and structural assessments of the anterior (cranial) cruciate ligament (CCL) and Achilles tendon in MPS I. Tissues were obtained postmortem from 12-month-old MPS I and control dogs and tested to failure in uniaxial tension. Both CCLs and Achilles tendons from MPS I animals exhibited significantly lower stiffness and failure properties compared to those from healthy controls. Histological examination revealed multiple pathological abnormalities, including collagen fiber disorganization, increased cellularity and vascularity, and elevated GAG content in both tissues. Clinically, animals exhibited mobility deficits, including abnormal gait, which was associated with hyperextensibility of the stifle and hock joints. These findings demonstrate that pathological changes to both ligaments and tendons contribute to abnormal joint function in MPS I, and suggest that effective clinical management of joint disease in patients should incorporate treatments targeting these tissues.
Assuntos
Tendão do Calcâneo , Modelos Animais de Doenças , Mucopolissacaridose I , Animais , Cães , Mucopolissacaridose I/patologia , Mucopolissacaridose I/fisiopatologia , Tendão do Calcâneo/patologia , Tendão do Calcâneo/fisiopatologia , Fenômenos Biomecânicos , Ligamento Cruzado Anterior/patologia , Masculino , FemininoRESUMO
Academic researchers faced a multitude of challenges posed by the COVID-19 pandemic, including widespread shelter-in-place orders, workplace closures, and cessation of in-person meetings and laboratory activities. The extent to which these challenges impacted musculoskeletal researchers, specifically, is unknown. We developed an anonymous web-based survey to determine the pandemic's impact on research productivity and career prospects among musculoskeletal research trainees and faculty. There were 116 musculoskeletal (MSK) researchers with varying demographic backgrounds who completed the survey. Of respondents, 48.3% (n = 56) believed that musculoskeletal funding opportunities decreased because of COVID-19, with faculty members more likely to hold this belief compared to nonfaculty researchers (p = 0.008). Amongst MSK researchers, 88.8% (n = 103) reported research activity was limited by COVID-19, and 92.2% (n = 107) of researchers reported their research was not able to be refocused on COVID-19-related topics, with basic science researchers less likely to be able to refocus their research compared to clinical researchers (p = 0.030). Additionally, 47.4% (n = 55) reported a decrease in manuscript submissions since the onset of the pandemic. Amongst 51 trainee researchers, 62.8% (n = 32) reported a decrease in job satisfaction directly attributable to the COVID-19 pandemic. In summary, study findings indicated that MSK researchers struggled to overcome challenges imposed by the pandemic, reporting declines in funding opportunities, research productivity, and manuscript submission. Trainee researchers experienced significant disruptions to critical research activities and worsening job satisfaction. Our findings motivate future efforts to support trainees in developing their careers and target the recovery of MSK research from the pandemic stall.
Assuntos
COVID-19 , Pesquisadores , COVID-19/epidemiologia , Humanos , Masculino , Feminino , Pesquisadores/estatística & dados numéricos , Adulto , Pesquisa Biomédica/tendências , Pandemias , Pessoa de Meia-Idade , Inquéritos e Questionários , Escolha da Profissão , Eficiência , SARS-CoV-2RESUMO
Despite concerted efforts to tackle the COVID-19 pandemic, the persistent transmission of SARS-CoV-2 demands continued research into novel vaccination strategies to combat the virus. In light of this, intranasally administered peptide vaccines, particularly those conjugated to an immune adjuvant to afford so-called "self-adjuvanted vaccines", remain underexplored. Here, we describe the synthesis and immunological evaluation of self-adjuvanting peptide vaccines derived from epitopes of the spike glycoprotein of SARS-CoV-2 covalently fused to the potent adjuvant, Pam2Cys, that targets toll-like receptor 2 (TLR2). When administered intranasally, these vaccines elicited a strong antigen-specific CD4+ and CD8+ T-cell response in the lungs as well as high titers of IgG and IgA specific to the native spike protein of SARS-CoV-2. Unfortunately, serum and lung fluid from mice immunized with these vaccines failed to inhibit viral entry in spike-expressing pseudovirus assays. Following this, we designed and synthesized fusion vaccines composed of the T-cell epitope discovered in this work, covalently fused to epitopes of the receptor-binding domain of the spike protein reported to be neutralizing. While antibodies elicited against these fusion vaccines were not neutralizing, the T-cell epitope retained its ability to stimulate strong antigen-specific CD4+ lymphocyte responses within the lungs. Given the Spike(883-909) region is still completely conserved in SARS-CoV-2 variants of concern and variants of interest, we envision the self-adjuvanting vaccine platform reported here may inform future vaccine efforts.
Assuntos
Adjuvantes Imunológicos , Administração Intranasal , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Lipopeptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/imunologia , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Lipopeptídeos/imunologia , Lipopeptídeos/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Feminino , Humanos , Camundongos Endogâmicos BALB C , Adjuvantes de Vacinas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Imunidade Celular , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologiaRESUMO
Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in response to mechanical perturbation.
Assuntos
Cartilagem/citologia , Resistência à Tração , Animais , Cartilagem/metabolismo , Bovinos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Microscopia Confocal/instrumentação , Especificidade de Órgãos , Proteoglicanas/metabolismo , Estresse MecânicoRESUMO
PURPOSE: The cartilaginous endplate (CEP) is a thin layer of hyaline cartilage positioned between the vertebral endplate and nucleus pulposus (NP) that functions both as a mechanical barrier and as a gateway for nutrient transport into the disc. Despite its critical role in disc nutrition and degeneration, the morphology of the CEP has not been well characterized. The objective of this study was to visualize and report observations of the CEP three-dimensional morphology, and quantify CEP thickness using an MRI FLASH (fast low-angle shot) pulse sequence. METHODS: MR imaging of ex vivo human cadaveric lumbar spine segments (N = 17) was performed in a 7T MRI scanner with sequence parameters that were selected by utilizing high-resolution T1 mapping, and an analytical MRI signal model to optimize image contrast between CEP and NP. The CEP thickness at five locations along the mid-sagittal AP direction (center, 5 mm, 10 mm off-center towards anterior and posterior) was measured, and analyzed using two-way ANOVA and a post hoc Bonferonni test. For further investigation, six in vivo volunteers were imaged with a similar sequence in a 3T MRI scanner. In addition, decalcified and undecalcified histology was performed, which confirmed that the FLASH sequence successfully detected the CEP. RESULTS: CEP thickness determined by MRI in the mid-sagittal plane across all lumbar disc levels and locations was 0.77 ± 0.24 mm ex vivo. The CEP thickness was not different across disc levels, but was thinner toward the center of the disc. CONCLUSIONS: This study demonstrates the potential of MRI FLASH imaging for structural quantification of the CEP geometry, which may be developed as a technique to evaluate changes in the CEP with disc degeneration in future applications.
Assuntos
Cartilagem Hialina/anatomia & histologia , Disco Intervertebral/anatomia & histologia , Vértebras Lombares/anatomia & histologia , Imageamento por Ressonância Magnética , Adulto , Idoso , Cadáver , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Degeneração do Disco Intervertebral/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
The sixth biennial ORS PSRS International Spine Research Symposium was held from November 6 to 10, 2022, at Skytop Lodge in northeastern Pennsylvania, USA. Organized jointly by the Orthopaedic Research Society and the Philadelphia Spine Research Society, the symposium attracted more than 200 participants from 15 different countries who came together to share the latest advances in basic and preclinical spine research. Following the symposium, selected participants were invited to submit full-length manuscripts to this special issue of JOR Spine.
RESUMO
Mucopolysaccharidosis (MPS) VII is an inherited lysosomal storage disorder characterized by deficient activity of the enzyme ß-glucuronidase. Skeletal abnormalities are common in patients and result in diminished quality of life. Enzyme replacement therapy (ERT) for MPS VII using recombinant human ß-glucuronidase (vestronidase alfa) was recently approved for use in patients; however, to date there have been no studies evaluating therapeutic efficacy in a large animal model of MPS VII. The objective of this study was to establish the effects of intravenous ERT, administered at either the standard clinical dose (4 mg/kg) or a high dose (20 mg/kg), on skeletal disease progression in MPS VII using the naturally occurring canine model. Untreated MPS VII animals exhibited progressive synovial joint and vertebral bone disease and were no longer ambulatory by age 6 months. Standard-dose ERT-treated animals exhibited modest attenuation of joint disease, but by age 6 months were no longer ambulatory. High-dose ERT-treated animals exhibited marked attenuation of joint disease, and all were still ambulatory by age 6 months. Vertebral bone disease was recalcitrant to ERT irrespective of dose. Overall, our findings indicate that ERT administered at higher doses results in significantly improved skeletal disease outcomes in MPS VII dogs.