Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669532

RESUMO

Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid ß-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates. In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10-4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10-4), mitochondrial fatty acid ß-oxidation (p = 9.2 × 10-3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Oxirredução , Fosforilação Oxidativa , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Transcriptoma/genética
2.
J Cell Sci ; 123(Pt 10): 1674-83, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20406883

RESUMO

Dictyostelium and human MidA are homologous proteins that belong to a family of proteins of unknown function called DUF185. Using yeast two-hybrid screening and pull-down experiments, we showed that both proteins interact with the mitochondrial complex I subunit NDUFS2. Consistent with this, Dictyostelium cells lacking MidA showed a specific defect in complex I activity, and knockdown of human MidA in HEK293T cells resulted in reduced levels of assembled complex I. These results indicate a role for MidA in complex I assembly or stability. A structural bioinformatics analysis suggested the presence of a methyltransferase domain; this was further supported by site-directed mutagenesis of specific residues from the putative catalytic site. Interestingly, this complex I deficiency in a Dictyostelium midA(-) mutant causes a complex phenotypic outcome, which includes phototaxis and thermotaxis defects. We found that these aspects of the phenotype are mediated by a chronic activation of AMPK, revealing a possible role of AMPK signaling in complex I cytopathology.


Assuntos
Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Domínio Catalítico/genética , Movimento Celular/genética , Biologia Computacional , Dictyostelium , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Metiltransferases/genética , Mutagênese Sítio-Dirigida , Mutação/genética , NADH Desidrogenase/metabolismo , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas de Protozoários/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
3.
Cells ; 8(5)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100984

RESUMO

The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative disorders with similar clinical manifestations whose precise mechanisms of disease are presently unknown. We created multiple cell lines each with different levels of reduction of expression of the gene coding for the type 2 variant of the disease, Tripeptidyl peptidase (Tpp1), in the cellular slime mould Dictyostelium discoideum. Knocking down Tpp1 in Dictyostelium resulted in the accumulation of autofluorescent material, a characteristic trait of Batten disease. Phenotypic characterisation of the mutants revealed phenotypic deficiencies in growth and development, whilst endocytic uptake of nutrients was enhanced. Furthermore, the severity of the phenotypes correlated with the expression levels of Tpp1. We propose that the phenotypic defects are due to altered Target of Rapamycin (TOR) signalling. We show that treatment of wild type Dictyostelium cells with rapamycin (a specific TOR complex inhibitor) or antisense inhibition of expression of Rheb (Ras homologue enriched in the brain) (an upstream TOR complex activator) phenocopied the Tpp1 mutants. We also show that overexpression of Rheb rescued the defects caused by antisense inhibition of Tpp1. These results suggest that the TOR signalling pathway is responsible for the cytopathological outcomes in the Dictyostelium Tpp1 model of Batten disease.


Assuntos
Aminopeptidases/genética , Dictyostelium/genética , Dictyostelium/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Serina Proteases/genética , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , DNA Antissenso , DNA de Protozoário , Dictyostelium/citologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Lisossomos/enzimologia , Mutação , Imagem Óptica , Fagocitose/efeitos dos fármacos , Fenótipo , Fototaxia , RNA Mensageiro/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Tripeptidil-Peptidase 1
4.
Dis Model Mech ; 2(9-10): 479-89, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19638422

RESUMO

Human patients with mitochondrial diseases are more susceptible to bacterial infections, particularly of the respiratory tract. To investigate the susceptibility of mitochondrially diseased cells to an intracellular bacterial respiratory pathogen, we exploited the advantages of Dictyostelium discoideum as an established model for mitochondrial disease and for Legionella pneumophila pathogenesis. Legionella infection of macrophages involves recruitment of mitochondria to the Legionella-containing phagosome. We confirm here that this also occurs in Dictyostelium and investigate the effect of mitochondrial dysfunction on host cell susceptibility to Legionella. In mitochondrially diseased Dictyostelium strains, the pathogen was taken up at normal rates, but it grew faster and reached counts that were twofold higher than in the wild-type host. We reported previously that other mitochondrial disease phenotypes for Dictyostelium are the result of the activity of an energy-sensing cellular alarm protein, AMP-activated protein kinase (AMPK). Here, we show that the increased ability of mitochondrially diseased cells to support Legionella proliferation is suppressed by antisense-inhibiting expression of the catalytic AMPKalpha subunit. Conversely, mitochondrial dysfunction is phenocopied, and intracellular Legionella growth is enhanced, by overexpressing an active form of AMPKalpha in otherwise normal cells. These results indicate that AMPK signalling in response to mitochondrial dysfunction enhances Legionella proliferation in host cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Divisão Celular , Dictyostelium/microbiologia , Legionella pneumophila/citologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Transdução de Sinais , Animais , Infecções Bacterianas/microbiologia , Proliferação de Células , Chaperonina 60/metabolismo , Vesículas Citoplasmáticas/microbiologia , Dictyostelium/citologia , Dictyostelium/enzimologia , Dictyostelium/ultraestrutura , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/ultraestrutura , Mitocôndrias/microbiologia , RNA Antissenso/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA