Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Small ; 20(6): e2307242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771206

RESUMO

Photovoltaic thin film solar cells based on kesterite Cu2 ZnSn(S, Se)4 (CZTSSe) have reached 13.8% sunlight-to-electricity conversion efficiency. However, this efficiency is still far from the Shockley-Queisser radiative limit and is hindered by the significant deficit in open circuit voltage (VOC ). The presence of high-density interface states between the absorber layer and buffer or window layer leads to the recombination of photogenerated carriers, thereby reducing effective carrier collection. To tackle this issue, a new window structure ZnO/AgNW/ZnO/AgNW (ZAZA) comprising layers of ZnO and silver nanowires (AgNWs) is proposed. This structure offers a simple and low-damage processing method, resulting in improved optoelectronic properties and junction quality. The ZAZA-based devices exhibit enhanced VOC due to the higher built-in voltage (Vbi ) and reduced interface recombination compared to the usual indium tin oxide (ITO) based structures. Additionally, improved carrier collection is demonstrated as a result of the shortened collection paths and the more uniform carrier lifetime distribution. These advances enable the fabrication of the first ITO-free CZTSSe solar cells with over 10% efficiency without an anti-reflective coating.

2.
Small ; 20(27): e2307807, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342673

RESUMO

Sodium (Na) doping is a well-established technique employed in chalcopyrite and kesterite solar cells. While various improvements can be achieved in crystalline quality, electrical properties, or defect passivation of the absorber materials by incorporating Na, a comprehensive demonstration of the desired Na distribution in CZTSSe is still lacking. Herein, a straightforward Na doping approach by dissolving NaCl into the CZTS precursor solution is proposed. It is demonstrated that a favorable Na ion distribution should comprise a precisely controlled Na+ concentration at the front surface and an enhanced distribution within the bottom region of the absorber layer. These findings demonstrated that Na ions play several positive roles within the device, leading to an overall power conversion efficiency of 12.51%.

3.
Small ; 20(40): e2402613, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38850186

RESUMO

Methanol is not only a promising liquid hydrogen carrier but also an important feedstock chemical for chemical synthesis. Catalyst design is vital for enabling the reactions to occur under ambient conditions. This study reports a new class of van der Waals heterojunction photocatalyst, which is synthesized by hot-injection method, whereby carbon dots (CDs) are grown in situ on ZnSe nanoplatelets (NPLs), i.e., metal chalcogenide quantum wells. The resultant organic-inorganic hybrid nanoparticles, CD-NPLs, are able to perform methanol dehydrogenation through CH splitting. The heterostructure has enabled light-induced charge transfer from the CDs into the NPLs occurring on a sub-nanosecond timescale, with charges remaining separated across the CD-NPLs heterostructure for longer than 500 ns. This resulted in significantly heightened H2 production rate of 107 µmole·g-1·h-1 and enhanced photocurrent density up to 34 µA cm-2 at 1 V bias potential. EPR and NMR analyses confirmed the occurrence of α-CH splitting and CC coupling. The novel CD-based organic-inorganic semiconductor heterojunction is poised to enable the discovery of a host of new nano-hybrid photocatalysts with full tunability in the band structure, charge transfer, and divergent surface chemistry for guiding photoredox pathways and accelerating reaction rates.

4.
J Phys Chem A ; 128(18): 3587-3595, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640443

RESUMO

The metal-ligand charge transfer (3MLCT) and phosphorescence-quenching metal-centered (3MC) states of the helicate and mesocate diastereoisomers of a double-stranded dinuclear polypyridylruthenium(II) complex have been investigated using ultrafast transient absorption spectroscopy. At 294 K, transient signals of the helicate decayed significantly slower than those of the mesocate, whereas at 77 K, no clear contrast in kinetics was observed. Contributions to excited-state decay from high-lying 3MLCT states were identified at both temperatures. Spectroscopic data (294 K) suggest that the 3MC state of the helicate lies above the 3MLCT and that the reverse is true for the mesocate; this was further validated by density functional theory calculations. The stabilization of the 3MC state relative to the 3MLCT state in the mesocate was explained by a reduction in ligand field strength due to distortion near the ligand bridge, which causes further deviation from octahedral geometry compared to the helicate. This work illustrates how minor structural differences can significantly influence excited state dynamics.

5.
Org Biomol Chem ; 21(11): 2390-2397, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857623

RESUMO

Absolute second-order rate coefficients for the reaction of the N- and C-protected amino acids tyrosine (Tyr), tryptophan (Trp), methionine (Met) and proline (Pro) with triethylamine-derived aliphatic peroxyl radical TEAOO˙, which was used as a model for lipid peroxyl radicals, were determined using laser flash photolysis. For Ac-Tyr-OMe a rate coefficient of 1.4 × 104 M-1 s-1 was obtained, whereas the reactions with Ac-Trp-OMe and Ac-Met-OMe were slower by a factor of 4 and 6, respectively. For the reaction with Ac-Pro-OMe only an upper value of 103 M-1 s-1 could be determined, suggesting that Pro residues are not effective traps for lipid peroxyl radicals. Density functional theory (DFT) calculations revealed that the reactions proceed via radical hydrogen atom transfer (HAT) from the Cα position, indicating that the rate is determined by the exothermicity of the reaction. In the case of Ac-Tyr-OMe, HAT from the phenolic OH group is the kinetically preferred pathway, which shuts down when hydrogen bonding with an amine occurs. In an alkaline environment, where the phenolic OH group is deprotonated, the reaction is predicted to occur preferably at Cß, likely through a proton-coupled electron transfer (PCET) mechanism.

6.
Nat Mater ; 20(1): 55-61, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33077949

RESUMO

Bandgap instability due to light-induced phase segregation in mixed-halide perovskites presents a major challenge for their future commercial use. Here we demonstrate that photoinduced halide-ion segregation can be completely reversed at sufficiently high illumination intensities, enabling control of the optical bandgap of a mixed-halide perovskite single crystal by optimizing the input photogenerated carrier density. We develop a polaron-based two-dimensional lattice model that rationalizes the experimentally observed phenomena by assuming that the driving force for photoinduced halide segregation is dependent on carrier-induced strain gradients that vanish at high carrier densities. Using illumination sources with different excitation intensities, we demonstrate write-read-erase experiments showing that it is possible to store information in the form of latent images over several minutes. The ability to control the local halide-ion composition with light intensity opens opportunities for the use of mixed-halide perovskites in concentrator and tandem solar cells, as well as in high-power light-emissive devices and optical memory applications.

7.
Analyst ; 148(1): 137-145, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468752

RESUMO

In this work, we have meticulously tuned the carcinogenic Congo red dye to environmentally benign fluorescent carbon dots (CDs) by adopting a typical hydrothermal method without any additives. The as-synthesized CDs were extremely water soluble, exhibited an excitation wavelength independent emission with a high fluorescence quantum yield (46%) and were biocompatible. The microscopy results revealed that the CDs were quasi-spherical with a particle diameter of ∼5 nm. The structure and functional groups of the CDs were comprehensively investigated using Fourier-transform infrared, X-ray photoelectron and Raman spectroscopy analyses. These studies show that the CDs were intrinsically functionalized with -OH, N-H and CO groups. In the sensing experiments, the CDs selectively responded to Fe3+ ions over other analytes with a detection limit of 12 nM. The time-resolved fluorescence quenching measurements were used to decipher the sensing mechanism. For the onsite 'equipment-free' detection of iron, we have developed a CD adsorbed paper-based analytical tool. Furthermore, the selective nature of CDs was highly beneficial for detecting Fe3+ in non-heme metalloprotein (ferritin) and real water samples. Thus, the CDs produced from the Congo red dye could be a prospective asset to the bio-imaging and biosensing research fields.


Assuntos
Ferritinas , Pontos Quânticos , Vermelho Congo , Pontos Quânticos/química , Carbono/química , Estudos Prospectivos , Corantes Fluorescentes/química , Água/química , Espectrometria de Fluorescência
8.
Angew Chem Int Ed Engl ; 61(15): e202111443, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997699

RESUMO

In photon-conversion processes, rapid cooling of photo-induced hot carriers is a dominant energy loss channel. We herein report a 3-fold reduced hot carrier cooling rate in CsPbBr3 nanocrystals capped with a cross-linked polysiloxane shell in comparison to single alkyl-chain oleylamine ligands. Relaxation of hot charge carriers depends on the carrier-phonon coupling (CPC) process as an important channel to dissipate energies in nanostructured perovskite materials. The CPC strengths in the two samples were measured through cryogenic photoluminescence spectroscopic measurements. The effect of organic ligands on the CPC in CsPbBr3 nanocrystals is elucidated based on a damped oscillation model. This supplements the conventional polaron-based CPC model, by involving a damping effect on the CPC from the resistance of the ligands against nanocrystal lattice vibrations. The model also accounts for the observed linear temperature-dependence of the CPC strength. Our work enables predictions about the effect of the ligands on the performance of perovskite nanocrystals in future applications.

9.
Phys Chem Chem Phys ; 23(15): 9357-9364, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885111

RESUMO

Diketopyrrolopyrrole (DPP) derivatives have been proposed for both singlet fission and energy upconversion as they meet the energetic requirements and exhibit superior photostability compared to many other chromophores. In this study, both time-resolved electronic and IR spectroscopy have been applied to investigate excited state relaxation processes competing with fission in dimers of DPP derivatives with varying linker structures. A charge-separated (CS) state is shown to be an important intermediate with dynamics that are both solvent and linker dependent. The CS state is found for a subset of the total population of excited molecules and it is proposed that CS state formation requires suitably aligned dimers within a broader distribution of conformations available in solution. No long-lived triplet signatures indicative of singlet fission were detected, with the CS state likely acting as an alternative relaxation pathway for the excitation energy. This study provides insight into the role of molecular conformation in determining excited state relaxation pathways in DPP dimer systems.

10.
J Am Chem Soc ; 142(5): 2562-2571, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922408

RESUMO

Organic photovoltaic (OPV) efficiencies continue to rise, raising their prospects for solar energy conversion. However, researchers have long considered how to suppress the loss of free carriers by recombination-poor diffusion and significant Coulombic attraction can cause electrons and holes to encounter each other at interfaces close to where they were photogenerated. Using femtosecond transient spectroscopies, we report the nanosecond grow-in of a large transient Stark effect, caused by nanoscale electric fields of ∼487 kV/cm between photogenerated free carriers in the device active layer. We find that particular morphologies of the active layer lead to an energetic cascade for charge carriers, suppressing pathways to recombination, which is ∼2000 times less than predicted by Langevin theory. This in turn leads to the buildup of electric charge in donor and acceptor domains-away from the interface-resistant to bimolecular recombination. Interestingly, this signal is only experimentally obvious in thick films due to the different scaling of electroabsorption and photoinduced absorption signals in transient absorption spectroscopy. Rather than inhibiting device performance, we show that devices up to 600 nm thick maintain efficiencies of >8% because domains can afford much higher carrier densities. These observations suggest that with particular nanoscale morphologies the bulk heterojunction can go beyond its established role in charge photogeneration and can act as a capacitor, where adjacent free charges are held away from the interface and can be protected from bimolecular recombination.

11.
Analyst ; 145(13): 4532-4539, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32420579

RESUMO

This work addresses the synthetic optimization of carbon dots (CDs) and their application in sensing picric acid from latent fingerprints by exploiting a smartphone-based RGB tool. The optimization of the synthesis of CDs is investigated towards achieving shorter reaction time, better product yield and fluorescence quantum efficiency. Precursors such as citric acid and thiourea were chosen for the synthesis of CDs. Among the various synthetic methodologies, it is found that the pyrolysis method offers ∼50% product yield within 15 min. The morphology and optical properties of the prepared CDs are characterized using the typical microscopic and spectroscopic techniques, respectively. The synthesized CDs exhibit quasi-spherical shape with an average particle size of 1.7 nm. The excitation dependent emissive properties of CDs are investigated by time resolved fluorescence spectroscopy. Furthermore, the excellent fluorescence properties (φ = 11%) of CDs are explored as a fluorescent fingerprint powder for the identification of latent fingerprints on various substrates. In addition, the presence of picric acid in latent fingerprints was detected. Furthermore, this study is extended to perform real time detection of fingerprints and harmful contaminants in fingerprints by utilizing a smartphone-based RGB color analysis tool. Based on these investigations, the prepared CDs could be a prospective fluorescent material in the field of forensics.

12.
Phys Chem Chem Phys ; 22(11): 6300-6307, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32133470

RESUMO

Improving the efficiency of triplet fusion upconversion (TF-UC) in the solid-state is still challenging due to the aggregation and phase separation of chromophores. In this work, two 9,10-diphenylanthracene (DPA) derivatives based on the modification of the 9,10-phenyl rings with bulky isopropyl groups (bDPA-1 and bDPA-2) were used as emitters. By using platinum octaethylporphyrin (PtOEP) as the sensitizer, TF-UC performance was comprehensively investigated in 3 media: toluene solution, polyurethane thin film and nano/micro-crystals in a polyvinyl alcohol matrix. Only a small difference in upconversion efficiency between the bulky DPAs and the DPA reference was observed in toluene solution and polyurethane thin film. However, a large improvement of TF-UC quantum yield was achieved in bDPA-2/PtOEP crystals (ΦUC = (0.92 ± 0.05)%) with a low excitation intensity threshold (52 mW cm-2) compared to that of DPA/PtOEP crystals (ΦUC = (0.09 ± 0.03)%). This difference was largely attributed to improved dispersibility of the PtOEP sensitizer in the bDPA-2 emitter crystals. The bulky DPAs also show excellent stability under UV irradiation with exposure to oxygen compared to DPA. These results provide a strategy for developing efficient solid-state TF-UC systems based on nano/micro-particles of emitter-sensitizer mixtures.

13.
Phys Chem Chem Phys ; 22(27): 15567-15572, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32613218

RESUMO

A series of phycobilin analogues have been investigated in terms of coupled excitonic systems. These compounds consist of a monomer, a tetrapyrrole structurally similar to bilirubin (bR), and two conjugated bR analogues. Spectroscopic and computational methods have been used to investigate the degree of interchromophore coupling. We find the synthesised bR analogue shows stronger excitonic coupling than bR, owing to a different molecular geometry. The excitonic coupling in the conjugated molecules can be controlled by modifying the bridge side-group. New computed energy levels for bR using the DFT/MRCI method are also presented, which improve on published values and re-assign the character of excited singlet states.


Assuntos
Antioxidantes/química , Bilirrubina/química , Teoria da Densidade Funcional , Antioxidantes/síntese química , Bilirrubina/análogos & derivados , Bilirrubina/síntese química , Estrutura Molecular , Eletricidade Estática
14.
J Phys Chem A ; 123(13): 2789-2795, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30865457

RESUMO

Blue-light-emitting semiconductors based on polyfluorenes often exhibit an undesired green emission band. In this report, three well-defined oligofluorenes corresponding to three types of "defects" attributed to aggregation, keto formation, and chain entanglement, respectively, are systemically investigated to unveil the origins of the green emission band in fluorene-based materials. First, the optical properties of defect molecules in different states are studied. The defect associated with aggregation is absent in dilute solutions and in films doped at 0.01 wt % with poly(methyl methacrylate). Second, the dependence of the emission spectra on the solvent was monitored to compare the effects of the "keto-" and "chain-entanglement defect" molecules. The green emission of keto defects exhibited a strong dependence on solvent polarity, whereas this cannot be observed in case of chain-entanglement defect. Third, energy transfer between poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]- co-[5-(octyloxy)-9,9-diphenyl-fluoren-2,7-diyl] and the keto or chain-entanglement defect molecules is illustrated. Compared to those of the chain-entanglement defect, the spectra of the keto defect molecule (1:10-3) show signs of defect emission at lower proportions. These investigations not only provide insight into the photophysics of oligofluorenes but also supply a new strategy to explore defects in semiconductor polymers, which will aid in the development of effective approaches to obtain stable, pure blue organic light-emitting diodes based on polyfluorenes.

15.
Angew Chem Int Ed Engl ; 58(9): 2893-2898, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30456831

RESUMO

Mixed organolead halide perovskites (MOHPs), CH3 NH3 Pb(Brx I1-x )3 , have been shown to undergo phase segregation into iodide-rich domains under illumination, which presents a major challenge to their development for photovoltaic and light-emitting devices. Recent work suggested that phase-segregated domains are localized at crystal boundaries, driving investigations into the role of edge structure and the growth of larger crystals with reduced surface area. Herein, a method for growing large (30×30×1 µm3 ) monocrystalline MAPb(Brx I1-x )3 single crystals is presented. The direct visualization of the growth of nanocluster-like I-rich domains throughout the entire crystal revealed that grain boundaries are not required for this transformation. Narrowband fluorescence imaging and time-resolved spectroscopy provided new insight into the nature of the phase-segregated domains and the collective impact on the optoelectronic properties.

16.
J Phys Chem A ; 122(50): 9605-9614, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30475619

RESUMO

Several new polymers with rotatable zinc porphyrin pendants have been synthesized and their optical spectroscopic and photophysical properties, including upconversion efficiencies, determined in both fluid solution and thin films. Comparisons made with the ß-substituted zinc tetraphenylporphyrin monomers and ZnTPP itself reveal that the yield of triplets resulting from either Q-band or Soret-band excitation of the polymers is surprisingly small. A detailed kinetic analysis of the fluorescence decays and transient triplet absorptions of the substituted monomers and their corresponding polymers reveals that this phenomenon is due to two parallel internal singlet quenching processes assigned to transient intrachain excimer formation. Consequently, the yields of upconverted S2 fluorescence resulting from Q-band excitation in the degassed polymers are significantly diminished in both fluid solution and thin films. Implications of these results for the design of polymer upconverting systems are discussed.

17.
Phys Chem Chem Phys ; 19(30): 19984-19991, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28722049

RESUMO

The spectroscopic properties of poly(methyl methacrylate) polymer films doped with two kinds of photochromic molecular switches are investigated. A green-fluorescent sulfonyl diarylethene (P1) is combined with either a non-fluorescent diarylethene (P2) or red-fluorescent spiropyran (P3). Photoswitching between the colorless and colored isomers (P1: o-BTFO4 ↔ c-BTFO4, P2: o-DTE ↔ c-DTE, P3: SP ↔ MC) enables the P1 + P2 and P1 + P3 films to be cycled through three distinct states. From the initial state (o-BTFO4 + o-DTE/SP), irradiation with UV light generates the second state (c-BTFO4 + c-DTE/MC), where c-BTFO4 → c-DTE/MC energy transfer is established. Irradiation with green light then generates the third state (c-BTFO4 + o-DTE/SP), where the energy transfer acceptor is no longer present. Finally, irradiation with blue light regenerates the initial state. For the P1 + P2 film, only one state is fluorescent, with the irradiation inputs required to be entered in the correct order to access this state, acting as a keypad lock. For the P1 + P3 film, the states emit either no fluorescence, red fluorescence, or green fluorescence, all using a common excitation wavelength. Additionally, once the fluorescence is activated with UV light, it undergoes a time-dependent color transition from red to green, due to the pairing of P-type and T-type photochromes. These multi-photochromic systems may be useful for security ink or imaging applications.

18.
Appl Opt ; 56(10): 2630-2635, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28375222

RESUMO

The reductions in the transmission of emission originating from a fluorophore dissolved in a polymer matrix due to light scattering were compared in two forms of planar waveguides used as luminescent solar concentrators: a thin film of poly(methylmethacrylate) (PMMA) spin-coated on a glass plate and a solid PMMA plate of the same dimensions. The losses attributable to light scattering encountered in the waveguide consisting of the thin film of polymer coated on a glass plate were not detectable within experimental uncertainty, whereas the losses in the solid polymer plate were significant. The losses in the solid plate are interpreted as arising from light-scattering centers comprising minute bubbles of vapor/gas, incomplete polymerization or water clusters that are introduced during or after the thermally induced polymerization process.

19.
Nano Lett ; 16(4): 2651-6, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26963038

RESUMO

Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.


Assuntos
Elétrons , Metais/química , Nanofios/química , Semicondutores , Ressonância de Plasmônio de Superfície/métodos
20.
Molecules ; 22(12)2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207549

RESUMO

Fluorescent dyes with aggregation-induced emission (AIE) properties exhibit intensified emission upon aggregation. They are promising candidates to study biomolecules and cellular changes in aqueous environments when aggregation formation occurs. Here, we report a group of 9-position functionalized anthracene derivatives that were conveniently synthesized by the palladium-catalyzed Heck reaction. Using fluorometric analyses, these dyes were confirmed to show AIE behavior upon forming aggregates at high concentrations, in viscous solvents, and when poorly solubilized. Their photophysical properties were then further correlated with their structural features, using density functional theory (DFT) calculation. Finally, we demonstrated their potential applications in monitoring pH changes, quantifying globular proteins, as well as cell imaging with confocal microscopy.


Assuntos
Antracenos/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA