Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Semin Cancer Biol ; 60: 41-56, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605750

RESUMO

The Signal Transducer and Activator of Transcription (STAT) family of proteins consists of transcription factors that play a complex and essential role in the regulation of physiologic cell processes, such as proliferation, differentiation, apoptosis and angiogenesis, and serves to organize the epigenetic landscape of immune cells. To date, seven STAT genes have been identified in the human genome; STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. They all account for diverse effects in response to extracellular signaling proteins, mainly by altering gene transcription in the effector cells. Members of the STAT family have been implicated in human cancer development, progression, metastasis, survival and resistance to treatment. Particularly STAT3 and STAT5 are of interest in cancer biology. They are currently considered as oncogenes, but their signaling is embedded into a complex and delicate balance between different (counteracting) transcription factors, and thus, in some contexts they can have a tumor suppressive role. Assessing STAT signaling mutations as well as screening for aberrant STAT pathway activation may have a role to predict sensitivity to immunotherapy and targeted STAT inhibition. In the present comprehensive review of the literature, we discuss in-depth the role of each STAT family member in cancer, assemble cutting-edge information on the use of these molecules as potential biomarkers and targets for treatment, and address why their clinical implementation is controversy.


Assuntos
Neoplasias/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Suscetibilidade a Doenças , Humanos , Janus Quinases/metabolismo , Terapia de Alvo Molecular , Família Multigênica , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia , Fatores de Transcrição STAT/genética , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670397

RESUMO

Even though cervical cancer is partly preventable, it still poses a great public health problem throughout the world. Current therapies have vastly improved the clinical outcomes of cervical cancer patients, but progress in new systemic treatment modalities has been slow in the last years. Especially for patients with advanced disease this is discouraging, as their prognosis remains very poor. The pathogen-induced nature, the considerable mutational load, the involvement of genes regulating the immune response, and the high grade of immune infiltration, suggest that immunotherapy might be a promising strategy to treat cervical cancer. In this literature review, we focus on the use of PD-1 blocking therapy in cervical cancer, pembrolizumab in particular, as it is the only approved immunotherapy for this disease. We discuss why it has great clinical potential, how it opens doors for personalized treatment in cervical cancer, and which trials are aiming to expand its clinical use.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Proteínas de Neoplasias/antagonistas & inibidores , Recidiva Local de Neoplasia/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias do Colo do Útero/terapia , Feminino , Humanos , Metástase Neoplásica , Proteínas de Neoplasias/imunologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
3.
Cancer Immunol Immunother ; 64(7): 831-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25863943

RESUMO

Dendritic cell (DC) vaccination has demonstrated potential in clinical trials as a new effective cancer treatment, but objective and durable clinical responses are confined to a minority of patients. Interferon (IFN)-α, a type-I IFN, can bolster anti-tumor immunity by restoring or increasing the function of DCs, T cells and natural killer (NK) cells. Moreover, type-I IFN signaling on DCs was found to be essential in mice for tumor rejection by the innate and adaptive immune system. Targeted delivery of IFN-α by DCs to immune cells could boost the generation of anti-tumor immunity, while avoiding the side effects frequently associated with systemic administration. Naturally circulating plasmacytoid DCs, major producers of type-I IFN, were already shown capable of inducing tumor antigen-specific T cell responses in cancer patients without severe toxicity, but their limited number complicates their use in cancer vaccination. In the present work, we hypothesized that engineering easily generated human monocyte-derived mature DCs to secrete IFN-α using mRNA electroporation enhances their ability to promote adaptive and innate anti-tumor immunity. Our results show that IFN-α mRNA electroporation of DCs significantly increases the stimulation of tumor antigen-specific cytotoxic T cell as well as anti-tumor NK cell effector functions in vitro through high levels of IFN-α secretion. Altogether, our findings mark IFN-α mRNA-electroporated DCs as potent inducers of both adaptive and innate anti-tumor immunity and pave the way for clinical trial evaluation in cancer patients.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Interferon-alfa/metabolismo , Proteínas WT1/imunologia , Antígenos de Neoplasias/genética , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/genética , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/transplante , Eletroporação , Humanos , Imunoterapia Adotiva , Interferon-alfa/genética , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Neoplasias/imunologia , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Proteínas WT1/genética
4.
J Cell Mol Med ; 18(7): 1372-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24979331

RESUMO

Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.


Assuntos
Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Neoplasias do Colo do Útero/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Humanos , Imunidade Inata/imunologia , Imunofenotipagem , Interleucina-15/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/prevenção & controle , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/prevenção & controle
6.
Antioxidants (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978917

RESUMO

Auranofin (AF) is a potent, off-patent thioredoxin reductase (TrxR) inhibitor that efficiently targets cancer via reactive oxygen species (ROS)- and DNA damage-mediated cell death. The goal of this study is to enhance the efficacy of AF as a cancer treatment by combining it with the poly(ADP-ribose) polymerase-1 (PARP) inhibitor olaparib (referred to as 'aurola'). Firstly, we investigated whether mutant p53 can sensitize non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) cancer cells to AF and olaparib treatment in p53 knock-in and knock-out models with varying p53 protein expression levels. Secondly, we determined the therapeutic range for synergistic cytotoxicity between AF and olaparib and elucidated the underlying molecular cell death mechanisms. Lastly, we evaluated the effectiveness of the combination strategy in a murine 344SQ 3D spheroid and syngeneic in vivo lung cancer model. We demonstrated that high concentrations of AF and olaparib synergistically induced cytotoxicity in NSCLC and PDAC cell lines with low levels of mutant p53 protein that were initially more resistant to AF. The aurola combination also led to the highest accumulation of ROS, which resulted in ROS-dependent cytotoxicity of mutant p53 NSCLC cells through distinct types of cell death, including caspase-3/7-dependent apoptosis, inhibited by Z-VAD-FMK, and lipid peroxidation-dependent ferroptosis, inhibited by ferrostatin-1 and alpha-tocopherol. High concentrations of both compounds were also needed to obtain a synergistic cytotoxic effect in 3D spheroids of the murine lung adenocarcinoma cell line 344SQ, which was interestingly absent in 2D. This cell line was used in a syngeneic mouse model in which the oral administration of aurola significantly delayed the growth of mutant p53 344SQ tumors in 129S2/SvPasCrl mice, while either agent alone had no effect. In addition, RNA sequencing results revealed that AF- and aurola-treated 344SQ tumors were negatively enriched for immune-related gene sets, which is in accordance with AF's anti-inflammatory function as an anti-rheumatic drug. Only 344SQ tumors treated with aurola showed the downregulation of genes related to the cell cycle, potentially explaining the growth inhibitory effect of aurola since no apoptosis-related gene sets were enriched. Overall, this novel combination strategy of oxidative stress induction (AF) with PARP inhibition (olaparib) could be a promising treatment for mutant p53 cancers, although high concentrations of both compounds need to be reached to obtain a substantial cytotoxic effect.

7.
Clin Cancer Res ; 29(3): 635-646, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341493

RESUMO

PURPOSE: Patients with cancer display reduced humoral responses after double-dose COVID-19 vaccination, whereas their cellular response is more comparable with that in healthy individuals. Recent studies demonstrated that a third vaccination dose boosts these immune responses, both in healthy people and patients with cancer. Because of the availability of many different COVID-19 vaccines, many people have been boosted with a different vaccine from the one used for double-dose vaccination. Data on such alternative vaccination schedules are scarce. This prospective study compares a third dose of BNT162b2 after double-dose BNT162b2 (homologous) versus ChAdOx1 (heterologous) vaccination in patients with cancer. EXPERIMENTAL DESIGN: A total of 442 subjects (315 patients and 127 healthy) received a third dose of BNT162b2 (230 homologous vs. 212 heterologous). Vaccine-induced adverse events (AE) were captured up to 7 days after vaccination. Humoral immunity was assessed by SARS-CoV-2 anti-S1 IgG antibody levels and SARS-CoV-2 50% neutralization titers (NT50) against Wuhan and BA.1 Omicron strains. Cellular immunity was examined by analyzing CD4+ and CD8+ T-cell responses against SARS-CoV-2-specific S1 and S2 peptides. RESULTS: Local AEs were more common after heterologous boosting. SARS-CoV-2 anti-S1 IgG antibody levels did not differ significantly between homologous and heterologous boosted subjects [GMT 1,755.90 BAU/mL (95% CI, 1,276.95-2,414.48) vs. 1,495.82 BAU/mL (95% CI, 1,131.48-1,977.46)]. However, homologous-boosted subjects show significantly higher NT50 values against BA.1 Omicron. Subjects receiving heterologous boosting demonstrated increased spike-specific CD8+ T cells, including higher IFNγ and TNFα levels. CONCLUSIONS: In patients with cancer who received double-dose ChAdOx1, a third heterologous dose of BNT162b2 was able to close the gap in antibody response.


Assuntos
COVID-19 , Neoplasias , Humanos , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunidade Celular , Imunoglobulina G , Neoplasias/terapia , Estudos Prospectivos , SARS-CoV-2 , Vacinação
8.
Oncologist ; 17(10): 1256-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907975

RESUMO

The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Animais , Citotoxicidade Imunológica , Humanos
9.
Pharmacol Ther ; 236: 108107, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34999181

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer related death. The urgent need for effective therapies is highlighted by the lack of adequate targeting. In PDAC, hedgehog (Hh) signaling is known to be aberrantly activated, which prompted the pathway as a possible target for effective treatment for PDAC patients. Unfortunately, specific targeting of upstream molecules within the Hh signaling pathway failed to bring clinical benefit. This led to the ongoing debate on Hh targeting as a therapeutic treatment for PDAC patients. Additionally, concurrent non-canonical activation routes also result in translocation of Gli transcription factors into the nucleus. Therefore, different downstream targets of the Hh signaling pathway were identified and evaluated in preclinical and clinical research. In this review we summarize the variety of Hh signaling antagonists in different preclinical models of PDAC. Furthermore, we discuss published and ongoing clinical trials that evaluated Hh antagonists and point out the current hurdles and future perspectives in the light of redesigning Hh-targeting therapies for the treatment of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/metabolismo , Neoplasias Pancreáticas
10.
Cancers (Basel) ; 14(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36077610

RESUMO

In this study, we aimed to study the expression of SARS-CoV-2-related surface proteins in non-small-cell lung cancer (NSCLC) cells and identify clinicopathological characteristics that are related to increased membranous (m)ACE2 protein expression and soluble (s)ACE2 levels, with a particular focus on standard of care (SOC) therapies. ACE2 (n = 107), TMPRSS2, and FURIN (n = 38) protein expression was determined by immunohistochemical (IHC) analysis in NSCLC patients. sACE2 levels (n = 64) were determined in the serum of lung cancer patients collected before, during, or after treatment with SOC therapies. Finally, the TCGA lung adenocarcinoma (LUAD) database was consulted to study the expression of ACE2 in EGFR- and KRAS-mutant samples and ACE2 expression was correlated with EGFR/HER, RAS, BRAF, ROS1, ALK, and MET mRNA expression. Membranous (m)ACE2 was found to be co-expressed with mFURIN and/or mTMPRSS2 in 16% of the NSCLC samples and limited to the adenocarcinoma subtype. TMPRSS2 showed predominantly atypical cytoplasmic expression. mACE2 and sACE2 were more frequently expressed in mutant EGFR patients, but not mutant-KRAS patients. A significant difference was observed in sACE2 for patients treated with targeted therapies, but not for chemo- and immunotherapy. In the TCGA LUAD cohort, ACE2 expression was significantly higher in EGFR-mutant patients and significantly lower in KRAS-mutant patients. Finally, ACE2 expression was positively correlated with ERBB2-4 and ROS1 expression and inversely correlated with KRAS, NRAS, HRAS, and MET mRNA expression. We identified a role for EGFR pathway activation in the expression of mACE2 in NSCLC cells, associated with increased sACE2 levels in patients. Therefore, it is of great interest to study SARS-CoV-2-infected EGFR-mutated NSCLC patients in greater depth in order to obtain a better understanding of how mACE2, sACE2, and SOC TKIs can affect the course of COVID-19.

11.
Pharmaceutics ; 14(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559255

RESUMO

The antineoplastic activity of the thioredoxin reductase 1 (TrxR) inhibitor, auranofin (AF), has already been investigated in various cancer mouse models as a single drug, or in combination with other molecules. However, there are inconsistencies in the literature on the solvent, dose and administration route of AF treatment in vivo. Therefore, we investigated the solvent and administration route of AF in a syngeneic SB28 glioblastoma (GBM) C57BL/6J and a 344SQ non-small cell lung cancer 129S2/SvPasCrl (129) mouse model. Compared to daily intraperitoneal injections and subcutaneous delivery of AF via osmotic minipumps, oral gavage for 14 days was the most suitable administration route for high doses of AF (10-15 mg/kg) in both mouse models, showing no measurable weight loss or signs of toxicity. A solvent comprising 50% DMSO, 40% PEG300 and 10% ethanol improved the solubility of AF for oral administration in mice. In addition, we confirmed that AF was a potent TrxR inhibitor in SB28 GBM tumors at high doses. Taken together, our results and results in the literature indicate the therapeutic value of AF in several in vivo cancer models, and provide relevant information about AF's optimal administration route and solvent in two syngeneic cancer mouse models.

12.
Cancer Immunol Immunother ; 60(6): 757-69, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21519825

RESUMO

Immunotherapy is currently under active investigation as an adjuvant therapy to improve the overall survival of patients with acute myeloid leukaemia (AML) by eliminating residual leukaemic cells following standard therapy. The graft-versus-leukaemia effect observed following allogeneic haematopoietic stem cell transplantation has already demonstrated the significant role of immune cells in controlling AML, paving the way to further exploitation of this effect in optimized immunotherapy protocols. In this review, we discuss the current state of cellular immunotherapy as adjuvant therapy for AML, with a particular focus on new strategies and recently published results of preclinical and clinical studies. Therapeutic vaccines that are being tested in AML include whole tumour cells as an autologous source of multiple leukaemia-associated antigens (LAA) and autologous dendritic cells loaded with LAA as effective antigen-presenting cells. Furthermore, adoptive transfer of cytotoxic T cells or natural killer cells is under active investigation. Results from phase I and II trials are promising and support further investigation into the potential of cellular immunotherapeutic strategies to prevent or fight relapse in AML patients.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Humanos , Leucemia Mieloide Aguda/imunologia
14.
Cancers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466653

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer that is causally associated with previous asbestos exposure in most afflicted patients. The prognosis of patients remains dismal, with a median overall survival of only 9-12 months, due to the limited effectiveness of any conventional anti-cancer treatment. New therapeutic strategies are needed to complement the limited armamentarium against MPM. We decided to focus on the combination of different immune checkpoint (IC) blocking antibodies (Abs). Programmed death-1 (PD-1), programmed death ligand-1 (PD-L1), T-cell immunoglobulin mucin-3 (TIM-3), and lymphocyte activation gene-3 (LAG-3) blocking Abs were tested as monotherapies, and as part of a combination strategy with a second IC inhibitor. We investigated their effect in vitro by examining the changes in the immune-related cytokine secretion profile of supernatant collected from treated allogeneic MPM-peripheral blood mononuclear cell (PBMC) co-cultures. Based on our in vitro results of cytokine secretion, and flow cytometry data that showed a significant upregulation of PD-L1 on PBMC after co-culture, we chose to further investigate the combinations of anti PD-L1 + anti TIM-3 versus anti PD-L1 + anti LAG-3 therapies in vivo in the AB1-HA BALB/cJ mesothelioma mouse model. PD-L1 monotherapy, as well as its combination with LAG-3 blockade, resulted in in-vivo delayed tumor growth and significant survival benefit.

15.
J Exp Clin Cancer Res ; 40(1): 213, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172082

RESUMO

Immunotherapy is currently under intensive investigation as a potential breakthrough treatment option for glioblastoma. Given the anatomical and immunological complexities surrounding glioblastoma, lymphocytes that infiltrate the brain to develop durable immunity with memory will be key. Polyinosinic:polycytidylic acid, or poly(I:C), and its derivative poly-ICLC could serve as a priming or boosting therapy to unleash lymphocytes and other factors in the (immuno)therapeutic armory against glioblastoma. Here, we present a systematic review on the effects and efficacy of poly(I:C)/poly-ICLC for glioblastoma treatment, ranging from preclinical work on cellular and murine glioblastoma models to reported and ongoing clinical studies. MEDLINE was searched until 15 May 2021 to identify preclinical (glioblastoma cells, murine models) and clinical studies that investigated poly(I:C) or poly-ICLC in glioblastoma. A systematic review approach was conducted according to PRISMA guidelines. ClinicalTrials.gov was queried for ongoing clinical studies. Direct pro-tumorigenic effects of poly(I:C) on glioblastoma cells have not been described. On the contrary, poly(I:C) changes the immunological profile of glioblastoma cells and can also kill them directly. In murine glioblastoma models, poly(I:C) has shown therapeutic relevance as an adjuvant therapy to several treatment modalities, including vaccination and immune checkpoint blockade. Clinically, mostly as an adjuvant to dendritic cell or peptide vaccines, poly-ICLC has been demonstrated to be safe and capable of eliciting immunological activity to boost therapeutic responses. Poly-ICLC could be a valuable tool to enhance immunotherapeutic approaches for glioblastoma. We conclude by proposing several promising combination strategies that might advance glioblastoma immunotherapy and discuss key pre-clinical aspects to improve clinical translation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Carboximetilcelulose Sódica/análogos & derivados , Glioblastoma/tratamento farmacológico , Poli I-C/uso terapêutico , Polilisina/análogos & derivados , Animais , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/uso terapêutico , Carboximetilcelulose Sódica/uso terapêutico , Ensaios Clínicos como Assunto , Glioblastoma/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Camundongos , Polilisina/uso terapêutico
16.
Redox Biol ; 42: 101949, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812801

RESUMO

Auranofin (AF) is an FDA-approved antirheumatic drug with anticancer properties that acts as a thioredoxin reductase 1 (TrxR) inhibitor. The exact mechanisms through which AF targets cancer cells remain elusive. To shed light on the mode of action, this study provides an in-depth analysis on the molecular mechanisms and immunogenicity of AF-mediated cytotoxicity in the non-small cell lung cancer (NSCLC) cell line NCI-H1299 (p53 Null) and its two isogenic derivates with mutant p53 R175H or R273H accumulation. TrxR is highly expressed in a panel of 72 NSCLC patients, making it a valid druggable target in NSCLC for AF. The presence of mutant p53 overexpression was identified as an important sensitizer for AF in (isogenic) NSCLC cells as it was correlated with reduced thioredoxin (Trx) levels in vitro. Transcriptome analysis revealed dysregulation of genes involved in oxidative stress response, DNA damage, granzyme A (GZMA) signaling and ferroptosis. Although functionally AF appeared a potent inhibitor of GPX4 in all NCI-H1299 cell lines, the induction of lipid peroxidation and consequently ferroptosis was limited to the p53 R273H expressing cells. In the p53 R175H cells, AF mainly induced large-scale DNA damage and replication stress, leading to the induction of apoptotic cell death rather than ferroptosis. Importantly, all cell death types were immunogenic since the release of danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation occurred irrespective of (mutant) p53 expression. Finally, we show that AF sensitized cancer cells to caspase-independent natural killer cell-mediated killing by downregulation of several key targets of GZMA. Our data provides novel insights on AF as a potent, clinically available, off-patent cancer drug by targeting mutant p53 cancer cells through distinct cell death mechanisms (apoptosis and ferroptosis). In addition, AF improves the innate immune response at both cytostatic (natural killer cell-mediated killing) and cytotoxic concentrations (dendritic cell maturation).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Auranofina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética
17.
Cancer Immunol Immunother ; 59(1): 35-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19449004

RESUMO

Immunotherapy for leukemia is a promising targeted strategy to eradicate residual leukemic cells after standard therapy, in order to prevent relapse and to prolong the survival of leukemia patients. However, effective anti-leukemia immune responses are hampered by the weak immunogenicity of leukemic cells. Therefore, much effort is made to identify agents that could increase the immunogenicity of leukemic cells and activate the immune system. Synthetic agonists of Toll-like receptor (TLR)7 and TLR8 are already in use as anticancer treatment, because of their ability to activate several immune pathways simultaneously, resulting in effective antitumor immunity. However, for leukemic cells little is known about the expression of TLR7/8 and the direct effects of their agonists. We hypothesized that TLR7/8 agonist treatment of human acute myeloid leukemia (AML) cells would lead to an increased immunogenicity of AML cells. We observed expression of TLR7 and TLR8 in primary human AML cells and AML cell lines. Passive pulsing of primary AML cells with the TLR7/8 agonist R-848 resulted in increased expression of MHC molecules, production of proinflammatory cytokines, and enhanced allogeneic naïve T cell-stimulatory capacity. These effects were absent or suboptimal if R-848 was administered intracellularly by electroporation. Furthermore, when AML cells were cocultured with allogeneic PBMC in the presence of R-848, interferon (IFN)-gamma was produced by allogeneic NK and NKT cells and AML cells were killed. In conclusion, the immunostimulatory effect of the TLR7/8 agonist R-848 on human AML cells could prove useful for the design of TLR-based immunotherapy for leukemia.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda/imunologia , Células T Matadoras Naturais/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adulto , Idoso , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/biossíntese , Citocinas/imunologia , Feminino , Antígenos de Histocompatibilidade/biossíntese , Antígenos de Histocompatibilidade/imunologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Receptor 7 Toll-Like/biossíntese , Receptor 8 Toll-Like/biossíntese , Células Tumorais Cultivadas , Adulto Jovem
18.
Cancers (Basel) ; 12(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012714

RESUMO

Targeting and exploiting the immune system has become a valid alternative to conventional options for treating cancer and infectious disease. Dendritic cells (DCs) take a central place given their role as key orchestrators of immunity. Therapeutic vaccination with autologous DCs aims to stimulate the patient's own immune system to specifically target his/her disease and has proven to be an effective form of immunotherapy with very little toxicity. A great amount of research in this field has concentrated on engineering these DCs through ribonucleic acid (RNA) to improve vaccine efficacy and thereby the historically low response rates. We reviewed in depth the 52 clinical trials that have been published on RNA-engineered DC vaccination, spanning from 2001 to date and reporting on 696 different vaccinated patients. While ambiguity prevents reliable quantification of effects, these trials do provide evidence that RNA-modified DC vaccination can induce objective clinical responses and survival benefit in cancer patients through stimulation of anti-cancer immunity, without significant toxicity. Succinct background knowledge of RNA engineering strategies and concise conclusions from available clinical and recent preclinical evidence will help guide future research in the larger domain of DC immunotherapy.

19.
Oncologist ; 14(3): 240-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19289488

RESUMO

Following standard therapy that consists of chemotherapy with or without stem cell transplantation, both relapsed and refractory disease shorten the survival of acute myeloid leukemia (AML) patients. Therefore, additional treatment options are urgently needed, especially to fight residual AML cells. The identification of leukemia-associated antigens and the observation that administration of allogeneic T cells can mediate a graft-versus-leukemia effect paved the way to the development of active and passive immunotherapy strategies, respectively. The aim of these strategies is the eradication of AML cells by the immune system. In this review, an overview is provided of both active and passive immunotherapy strategies that are under investigation or in use for the treatment of AML. For each strategy, a critical view on the state of the art is given and future perspectives are discussed.


Assuntos
Imunoterapia/métodos , Leucemia Mieloide/terapia , Doença Aguda , Humanos , Leucemia Mieloide/imunologia
20.
J Transl Med ; 7: 109, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20021667

RESUMO

BACKGROUND: Optimization of the current dendritic cell (DC) culture protocol in order to promote the therapeutic efficacy of DC-based immunotherapy is warranted. Alternative differentiation of monocyte-derived DCs using granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-15 has been propagated as an attractive strategy in that regard. The applicability of these so-called IL-15 DCs has not yet been firmly established. We therefore developed a novel pre-clinical approach for the generation of IL-15 DCs with potent immunostimulatory properties. METHODS: Human CD14+ monocytes were differentiated with GM-CSF and IL-15 into immature DCs. Monocyte-derived DCs, conventionally differentiated in the presence of GM-CSF and IL-4, served as control. Subsequent maturation of IL-15 DCs was induced using two clinical grade maturation protocols: (i) a classic combination of pro-inflammatory cytokines (tumor necrosis factor-alpha, IL-1beta, IL-6, prostaglandin E2) and (ii) a Toll-like receptor (TLR)7/8 agonist-based cocktail (R-848, interferon-gamma, TNF-alpha and prostaglandin E2). In addition, both short-term (2-3 days) and long-term (6-7 days) DC culture protocols were compared. The different DC populations were characterized with respect to their phenotypic profile, migratory properties, cytokine production and T cell stimulation capacity. RESULTS: The use of a TLR7/8 agonist-based cocktail resulted in a more optimal maturation of IL-15 DCs, as reflected by the higher phenotypic expression of CD83 and costimulatory molecules (CD70, CD80, CD86). The functional superiority of TLR7/8-activated IL-15 DCs over conventionally matured IL-15 DCs was evidenced by their (i) higher migratory potential, (ii) advantageous cytokine secretion profile (interferon-gamma, IL-12p70) and (iii) superior capacity to stimulate autologous, antigen-specific T cell responses after passive peptide pulsing. Aside from a less pronounced production of bioactive IL-12p70, short-term versus long-term culture of TLR7/8-activated IL-15 DCs resulted in a migratory profile and T cell stimulation capacity that was in favour of short-term DC culture. In addition, we demonstrate that mRNA electroporation serves as an efficient antigen loading strategy of IL-15 DCs. CONCLUSIONS: Here we show that short-term cultured and TLR7/8-activated IL-15 DCs fulfill all pre-clinical prerequisites of immunostimulatory DCs. The results of the present study might pave the way for the implementation of IL-15 DCs in immunotherapy protocols.


Assuntos
Adjuvantes Imunológicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Interleucina-15/farmacologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Eletroporação , Epitopos , Humanos , Interleucina-12/metabolismo , Fagocitose/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/metabolismo , Fatores de Tempo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA