RESUMO
The Mec1/ATR kinase coordinates multiple cellular responses to replication stress. In addition to its canonical role in activating the checkpoint kinase Rad53, Mec1 also plays checkpoint-independent roles in genome maintenance that are not well understood. Here we used a combined genetic-phosphoproteomic approach to manipulate Mec1 activation and globally monitor Mec1 signaling, allowing us to delineate distinct checkpoint-independent modes of Mec1 action. Using cells in which endogenous Mec1 activators were genetically ablated, we found that expression of "free" Mec1 activation domains (MADs) can robustly activate Mec1 and rescue the severe DNA replication and growth defects of these cells back to wild-type levels. However, unlike the activation mediated by endogenous activator proteins, "free" MADs are unable to stimulate Mec1-mediated suppression of gross chromosomal rearrangements (GCRs), revealing that Mec1's role in genome maintenance is separable from a previously unappreciated proreplicative function. Both Mec1's functions in promoting replication and suppressing GCRs are independent of the downstream checkpoint kinases. Additionally, Mec1-dependent GCR suppression seems to require localized Mec1 action at DNA lesions, which correlates with the phosphorylation of activator-proximal substrates involved in homologous recombination-mediated DNA repair. These findings establish that Mec1 initiates checkpoint signaling, promotes DNA replication, and maintains genetic stability through distinct modes of action.
Assuntos
Pontos de Checagem do Ciclo Celular/genética , Replicação do DNA/genética , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Ativação Enzimática/genética , Instabilidade Genômica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Fosforilação , Domínios Proteicos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Assuntos
Reparo do DNA , Proteínas Quinases/metabolismo , Animais , Dano ao DNA , Humanos , Saccharomycetales/enzimologia , Transdução de SinaisRESUMO
The Mec1/Tel1 kinases (human ATR/ATM) play numerous roles in the DNA replication stress response. Despite the multi-functionality of these kinases, studies of their in vivo action have mostly relied on a few well-established substrates. Here we employed a combined genetic-phosphoproteomic approach to monitor Mec1/Tel1 signaling in a systematic, unbiased, and quantitative manner. Unexpectedly, we find that Mec1 is highly active during normal DNA replication, at levels comparable or higher than Mec1's activation state induced by replication stress. This "replication-correlated" mode of Mec1 action requires the 9-1-1 clamp and the Dna2 lagging-strand factor and is distinguishable from Mec1's action in activating the downstream kinase Rad53. We propose that Mec1/ATR performs key functions during ongoing DNA synthesis that are distinct from their canonical checkpoint role during replication stress.
Assuntos
Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Variante 6 da Proteína do Fator de Translocação ETSRESUMO
All cells incur DNA damage from exogenous and endogenous sources and possess pathways to detect and repair DNA damage. Post-translational modifications (PTMs), in the past 20 years, have risen to ineluctable importance in the study of the regulation of DNA repair mechanisms. For example, DNA damage response kinases are critical in both the initial sensing of DNA damage as well as in orchestrating downstream activities of DNA repair factors. Mass spectrometry-based proteomics revolutionized the study of the role of PTMs in the DNA damage response and has canonized PTMs as central modulators of nearly all aspects of DNA damage signaling and repair. This review provides a biologist-friendly guide for the mass spectrometry analysis of PTMs in the context of DNA repair and DNA damage responses. We reflect on the current state of proteomics for exploring new mechanisms of PTM-based regulation and outline a roadmap for designing PTM mapping experiments that focus on the DNA repair and DNA damage responses.
Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Dano ao DNA , Reparo do DNA , Espectrometria de Massas/métodos , Proteômica/métodosRESUMO
Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a "MS2-centric" approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics ["fraction of mis-identifications" (FMI) and "fraction of interprotein cross-links from known interactions" (FKI)]. We then address this problem, by designing a novel "MS3-centric" approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance.
Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Humanos , Células K562 , Espectrometria de Massas , Peptídeos/metabolismo , Proteoma , Sensibilidade e EspecificidadeRESUMO
Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1-TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Recombinação Homóloga/genética , Proteínas Nucleares/genética , Reparo de DNA por Recombinação/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Dano ao DNA/genética , Proteínas Fúngicas/genética , Células HEK293 , Humanos , Fase S/genética , LevedurasRESUMO
The fastidious bacterium Xylella fastidiosa is associated with important crop diseases worldwide. We have recently shown that X. fastidiosa is a peculiar organism having unusually low values of gene codon bias throughout its genome and, unexpectedly, in the group of the most abundant proteins. Here, we hypothesized that the lack of codon usage optimization in X. fastidiosa would incapacitate this organism to undergo quick and massive changes in protein expression as occurs in a classical stress response. Proteomic analysis of the response to heat stress in X. fastidiosa revealed that no changes in protein expression can be detected. Moreover, stress-inducible proteins identified in the closely related citrus pathogen Xanthomonas axonopodis pv citri were found to be constitutively expressed in X. fastidiosa. These proteins have extremely high codon bias values in the X. citri and other well-studied organisms, but low values in X. fastidiosa. Because biased codon usage is well known to correlate to the rate of protein synthesis, we speculate that the peculiar codon bias distribution in X. fastidiosa is related to the absence of a classical stress response, and, probably, alternative strategies for survival of X. fastidiosa under stressfull conditions.
Assuntos
Citrus/microbiologia , Resposta ao Choque Térmico , Xylella/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas/patogenicidade , Xanthomonas/fisiologia , Xylella/genética , Xylella/metabolismo , Xylella/patogenicidadeRESUMO
The bacteria Xylella fastidiosa is the causative agent of a number of economically important crop diseases, including citrus variegated chlorosis. Although its complete genome is already sequenced, X. fastidiosa is very poorly characterized by biochemical approaches at the protein level. In an initial effort to characterize protein expression in X. fastidiosa we used one- and two-dimensional gel electrophoresis and mass spectrometry to identify the products of 142 genes present in a whole cell extract and in an extracellular fraction of the citrus isolated strain 9a5c. Of particular interest for the study of pathogenesis are adhesion and secreted proteins. Homologs to proteins from three different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) were found to be coexpressed, the last two being detected only as multimeric complexes in the high molecular weight region of one-dimensional electrophoresis gels. Using a procedure to extract secreted proteins as well as proteins weakly attached to the cell surface we identified 30 different proteins including toxins, adhesion related proteins, antioxidant enzymes, different types of proteases and 16 hypothetical proteins. These data suggest that the intercellular space of X. fastidiosa colonies is a multifunctional microenvironment containing proteins related to in vivo bacterial survival and pathogenesis. A codon usage analysis of the most expressed proteins from the whole cell extract revealed a low biased distribution, which we propose is related to the slow growing nature of X. fastidiosa. A database of the X. fastidiosa proteome was developed and can be accessed via the internet (URL: www.proteome.ibi.unicamp.br).