Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 32: 267-288, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090419

RESUMO

Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

2.
ACS Appl Mater Interfaces ; 13(27): 32531-32541, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181393

RESUMO

Copper-doped titanium oxynitride (TiNxOy) thin films were grown by atomic layer deposition (ALD) using the TiCl4 precursor, NH3, and O2 at 420 °C. Forming gas was used to reduce the background oxygen concentration and to transfer the copper atoms in an ALD chamber prior to the growth initiation of Cu-doped TiNxOy. Such forming gas-mediated Cu-doping of TiNxOy films had a pronounced effect on their resistivity, which dropped from 484 ± 8 to 202 ± 4 µΩ cm, and also on the resistance temperature coefficient (TCR), which decreased from 1000 to 150 ppm °C-1. We explored physical mechanisms causing this reduction by performing comparative analysis of atomic force microscopy, X-ray photoemission spectroscopy, X-ray diffraction, optical spectra, low-temperature transport, and Hall measurement data for the samples grown with and without forming gas doping. The difference in the oxygen concentration between the films did not exceed 6%. Copper segregated to the TiNxOy surface where its concentration reached 0.72%, but its penetration depth was less than 10 nm. Pronounced effects of the copper doping by forming gas included the TiNxOy film crystallite average size decrease from 57-59 to 32-34 nm, considerably finer surface granularity, electron concentration increase from 2.2(3) × 1022 to 3.5(1) × 1022 cm-3, and the electron mobility improvement from 0.56(4) to 0.92(2) cm2 V-1 s-1. The DC resistivity versus temperature R(T) measurements from 4.2 to 300 K showed a Cu-induced phase transition from a disordered to semimetallic state. The resistivity of Cu-doped TiNxOy films decreased with the temperature increase at low temperatures and reached the minimum near T = 50 K revealing signatures of the quantum interference effects similar to 2D Cu thin films, and then, semimetallic behavior was observed at higher temperatures. In TiNxOy films grown without forming gas, the resistivity decreased with the temperature increase as R(T) = - 1.88T0.6 + 604 µΩ cm with no semimetallic behavior observed. The medium range resistivity and low TCR of Cu-doped TiNxOy make this material an attractive choice for improved matching resistors in RF analog circuits and Si complementary metal-oxide-semiconductor integrated circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA