Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9485, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676316

RESUMO

The current work studies the motion of viscoelastic liquid saturated with carbon nanotubes over a stretching surface in a Darcy porous medium analytically below an influence of Cattaneo-Christov heat flux. The carbon nanotubes (CNTs) act as nanoparticles which are then appended into the base fluid. Water and kerosene are used as a base fluid with two types of CNTs, namely, Single-wall carbon nanotubes and Multiwall carbon nanotubes. Carbon nanotubes possess a wide range of industrial and biomedical applications including energy production, nuclear reactor cooling, and galaxy cooling applications because they can expand the thermal and mechanical properties of base things. As a result, the carbon nanotubes used in the mentioned fields are being investigated for their potential in heat transfer applications. Governing equations formulated using the Partial differential equations have converted to Ordinary differential equations exhausting the appropriate comparison transformation process. An influence of some relevant constraints on velocity and temperature is evaluated in details. The Cattaneo-Christov heat transfer model is utilized to investigate the heat transfer individualities with varying thermal conductivity consuming the attributes of the Appell hypergeometric function. The impacts of the emerging parameters on the profiles are depicted through graphical representations and analytically constructed tables. Considering its usefulness in modulating temperature distribution in different industrial application, including solar collector design, electronic cooling, building ventilation, etc. According to our findings, the temperature profile exhibits an enhancement with the thermal radiation parameter and the viscous-elastic fluids. In addition, when compared to the classical Fourier's law of heat conduction, the temperature profile and thermal boundary layer thickness for the Cattaneo-Christov heat flux model are lower.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA