Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682546

RESUMO

A remodeling of calcium homeostasis, including calcium influx via store-operated calcium entry (SOCE), is a feature of breast cancers. SOCE is critical to maintain calcium balance in the endoplasmic reticulum calcium store and is an important mechanism for calcium signaling in a variety of cell types, including breast cancer cells. The canonical mechanism of SOCE is stromal interacting molecule 1 (STIM1)-mediated activation of ORAI. Elevated ORAI1 expression is a feature of basal breast cancer cells. However, the role of ORAI1 in the regulation of transcription in breast cancer cells of the basal molecular subtype is still unclear. Using CRISPR-Cas9 gene editing, ORAI1 protein expression was disrupted in MDA-MB-231 and MDA-MB-468 basal breast cancer cells. The ORAI1 wild-type and mutants were reintroduced into ORAI1 knockout cells to study the role of ORAI1 in gene transcriptional regulation. In the absence of calcium store depletion, ORAI1 regulated PTGS2 in MDA-MB-231 cells, and this was dependent on ORAI1 pore function and STIM1 binding. The activation of SOCE by thapsigargin resulted in ORAI1-dependent increases in IL6 transcription in MDA-MB-468 cells; this was also dependent on ORAI1 pore function and STIM1 binding and was associated with the translocation of NFAT1. Given the upregulation of ORAI1 in basal breast cancer cells, our results provide further evidence that ORAI1 may contribute to cancer progression through regulation of gene expression.


Assuntos
Neoplasias da Mama , Cálcio , Neoplasias da Mama/genética , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio da Dieta , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Fatores de Transcrição/metabolismo
2.
Semin Cell Dev Biol ; 94: 74-83, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30439562

RESUMO

The past two decades have seen the identification of important roles for calcium signalling in many of the hallmarks of cancer. One of the cancer types that has been a particular focus of such studies is breast cancer. The breast is intrinsically linked to the calcium ion due to the importance of milk calcium in neonatal growth and development. Indeed, some of the calcium channels and pumps involved in transporting calcium ions into milk also have altered expression in some breast cancers. However, altered expression is not confined to channels and pumps important in lactation, other calcium channels and pumps may also be modulated and may even be specific to breast cancer molecular subtypes. This review considers calcium signalling in the context of breast cancer and provides an overview of the roles that have been attributed to specific regulators of cellular calcium levels in processes relevant to breast cancer progression. Emerging areas in the study of calcium signalling in breast cancer are considered, such as the intersection between calcium signalling, the tumour microenvironment and breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Microambiente Tumoral
3.
Lab Invest ; 100(2): 199-206, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31822791

RESUMO

Transient receptor potential cation channel subfamily V (TRPV) channels play important roles in a variety of cellular processes. One example includes the sensory role of TRPV1 that is sensitive to elevated temperatures and acidic environments and is activated by the hot pepper component capsaicin. Another example is the importance of the highly Ca2+ selective channels TRPV5 and TRPV6 in Ca2+ absorption/reabsorption in the intestine and kidney. However, in some cases such as TRPV4 and TRPV6, breast cancer cells appear to overexpress TRPV channels. Moreover, TRPV mediated Ca2+ influx may contribute to enhanced breast cancer cell proliferation and other processes important in tumor progression such as angiogenesis. It appears that the overexpression of some TRPV channels in breast cancer and/or their involvement in breast cancer cell processes, processes important in the tumor microenvironment or pain may make some TRPV channels potential targets for breast cancer therapy. In this review, we provide an overview of TRPV expression in breast cancer subtypes, the roles of TRPV channels in various aspects of breast cancer progression and consider implications for future therapeutic approaches.


Assuntos
Neoplasias da Mama , Canais de Cátion TRPV , Cálcio/metabolismo , Progressão da Doença , Feminino , Humanos , Invasividade Neoplásica , Microambiente Tumoral
4.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322037

RESUMO

Epithelial to mesenchymal transition (EMT) in cancer is important in therapeutic resistance and invasiveness. Calcium signaling is key to the induction of EMT in breast cancer cells. Although inhibition of specific calcium-permeable ion channels regulates the induction of a sub-set of EMT markers in breast cancer cells, it is still unclear if activation of a specific calcium channel can be a driver for the induction of EMT events. In this study, we exploited the availability of a selective pharmacological activator of the calcium-permeable ion channel TRPV4 to assess the direct role of calcium influx in EMT marker induction. Gene association studies revealed a link between TRPV4 and gene-ontologies associated with EMT and poorer relapse-free survival in lymph node-positive basal breast cancers. TRPV4 was an important component of the calcium influx phase induced in MDA-MB-468 breast cancer cells by the EMT inducer epidermal growth factor (EGF). Pharmacological activation of TRPV4 then drove the induction of a variety of EMT markers in breast cancer cells. These studies demonstrate that calcium influx through specific pathways appears to be sufficient to trigger EMT events.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal , Canais de Cátion TRPV/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Sulfonamidas/farmacologia , Análise de Sobrevida , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética
5.
Commun Biol ; 7(1): 467, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632473

RESUMO

Differences in shape can be a distinguishing feature between different cell types, but the shape of a cell can also be dynamic. Changes in cell shape are critical when cancer cells escape from the primary tumor and undergo major morphological changes that allow them to squeeze between endothelial cells, enter the vasculature, and metastasize to other areas of the body. A shift from rounded to spindly cellular geometry is a consequence of epithelial-mesenchymal plasticity, which is also associated with changes in gene expression, increased invasiveness, and therapeutic resistance. However, the consequences and functional impacts of cell shape changes and the mechanisms through which they occur are still poorly understood. Here, we demonstrate that altering the morphology of a cell produces a remodeling of calcium influx via the ion channel PIEZO1 and identify PIEZO1 as an inducer of features of epithelial-to-mesenchymal plasticity. Combining automated epifluorescence microscopy and a genetically encoded calcium indicator, we demonstrate that activation of the PIEZO1 force channel with the PIEZO1 agonist, YODA 1, induces features of epithelial-to-mesenchymal plasticity in breast cancer cells. These findings suggest that PIEZO1 is a critical point of convergence between shape-induced changes in cellular signaling and epithelial-mesenchymal plasticity in breast cancer cells.


Assuntos
Neoplasias da Mama , Células Endoteliais , Canais Iônicos , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Transição Epitelial-Mesenquimal/genética , Plasticidade Celular/genética
6.
Cell Calcium ; 104: 102569, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248793

RESUMO

Both matrix stiffening and remodeling of calcium signaling occur in breast cancers, with downstream consequences linked to the progression of the disease. However, the potential intersection between calcium signaling and matrix stiffness has not been fully assessed in models of cancer. Here, we describe the assessment of calcium signaling in breast cancer cells at high and low matrix stiffness using novel gel culture models (gelatin methacryloyl and polydimethylsiloxane) and MDA-MB-231 breast cancer cells expressing the calcium sensor GCaMP6m. Remodeling of ATP-stimulated cytosolic calcium responses in cells on different matrices was assessed using a high throughput fluorescence imaging plate reader. Our data reveal that matrices of higher stiffness attenuate ATP-induced sustained calcium influx in MDA-MB-231 breast cancer cells. This matrix-mediated attenuation of sustained calcium influx was dependent on the store-operated calcium channel component ORAI1. These studies suggest that calcium signaling in breast cancer cells can be altered as a consequence of matrix stiffness; modulation of such pathways may represent a new mechanism to target calcium signaling to regulate tumor progression in breast cancer.


Assuntos
Neoplasias da Mama , Cálcio , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Feminino , Gelatina , Humanos , Metacrilatos , Proteína ORAI1/metabolismo
7.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230716

RESUMO

Although breast cancer cells often exhibit both abnormal AKT signaling and calcium signaling, the association between these two pathways is unclear. Using a combination of pharmacological tools, siRNA and CRISPR/Cas9 gene silencing techniques, we investigated the association between PTEN, AKT phosphorylation and calcium signaling in a basal breast cancer cell line. We found that siRNA-mediated PTEN silencing promotes AKT phosphorylation and calcium influx in MDA-MB-231 cells. This increase in AKT phosphorylation and calcium influx was phenocopied by the pharmacological AKT activator, SC79. The increased calcium influx associated with SC79 is inhibited by silencing AKT2, but not AKT1. This increase in calcium influx is suppressed when the store-operated calcium channel, ORAI1 is silenced. The results from this study open a novel avenue for therapeutic targeting of cancer cells with increased AKT activation. Given the association between ORAI1 and breast cancer, ORAI1 is a possible therapeutic target in cancers with abnormal AKT signaling.

9.
ChemMedChem ; 11(1): 72-80, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593399

RESUMO

3-Substituted indolin-2-ones are an important class of compounds that display a wide range of biological activities. Sunitinib is an orally available multiple tyrosine kinase inhibitor that has been approved by the US Food and Drug Administration (FDA) for the treatment of renal cell cancer. Sunitinib and a related compound, semaxanib, exist as thermodynamically stable Z isomers, which photoisomerize to E isomers in solution. In this study, 17 3-substituted indolin-2-ones were synthesized, and the kinetics of their photoisomerization were studied by (1)H NMR spectroscopy. The rate constants for photoisomerization ranged from 0.009 to 0.048 h(-1). Selected compounds were tested for cytotoxicity in the TAMH liver cell line. E/Z mixtures of four compounds were also assessed for toxicity in the TAMH and HepG2 cell lines. In some cases, the stereochemically pure drug was more toxic than the E/Z mixtures, but a general statement cannot be made. Our studies show that each stereoisomer could contribute differently to toxicity, suggesting that stereochemical purity issues that could arise from isomerization cannot be ignored.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Indóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Indóis/síntese química , Indóis/química , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Estrutura Molecular , Processos Fotoquímicos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirróis/síntese química , Pirróis/química , Estereoisomerismo , Relação Estrutura-Atividade , Sunitinibe
10.
Antioxid Redox Signal ; 19(11): 1149-65, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23311917

RESUMO

AIMS: The role of thioredoxin reductase (TrxR) in tumorigenesis has made it an attractive anticancer target. A systematic approach for development of novel compounds as TrxR inhibitors is currently lacking. Structurally diversified TrxR inhibitors share in common electrophilic propensities for the sulfhydryl groups, among which include the Michael reaction acceptors containing an α,ß-unsaturated carbonyl moiety. We aimed to identify features among structurally diversified Michael acceptor-based compounds that would yield a strong TrxR inhibitory character. RESULTS: Structurally dissimilar Michael acceptor-based natural compounds such as isobutylamides, zerumbone, and shogaols (SGs) were found to possess a poor TrxR inhibitory activity, indicating that a sole Michael acceptor moiety was insufficient to produce TrxR inhibition. The 1,7-diphenyl-hept-3-en-5-one pharmacophore in 3-phenyl-3-SG, a novel SG analog that possessed comparable TrxR inhibitory and antiproliferative potencies as 6-SG, was modified to yield 1,5-diphenyl-pent-1-en-3-one (DPPen) and 1,3-diphenyl-pro-1-en-3-one (DPPro, also known as chalcone) pharmacophores. These Michael acceptor-centric pharmacophores, when substituted with the hydroxyl and fluorine groups, gave rise to analogs displaying a TrxR inhibitory character positively correlated to their antiproliferative potencies. Lead analogs 2,2'-diOH-5,5'-diF-DPPen and 2-OH-5-F-DPPro yielded a half-maximal TrxR inhibitory concentration of 9.1 and 10.5 µM, respectively, after 1-h incubation with recombinant rat TrxR, with the C-terminal selenocysteine residue found to be targeted. INNOVATION: Identification of Michael acceptor-centric pharmacophores among diversified compounds demonstrates that a systematic approach to discover and develop Michael acceptor-based TrxR inhibitors is feasible. CONCLUSION: A strong TrxR inhibitory character correlated to the antiproliferative potency is attributed to structural features that include an α,ß-unsaturated carbonyl moiety centered in a DPPen or DPPro pharmacophore bearing hydroxyl and fluorine substitutions.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Animais , Antineoplásicos/química , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/análogos & derivados , Chalcona/química , Relação Dose-Resposta a Droga , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/metabolismo , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Ratos , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo
11.
PLoS One ; 7(11): e50125, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185555

RESUMO

Multifunctional trans-cinnamaldehyde (CA) and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA) and 5-fluoro-2-hydroxycinnamaldehyde (FHCA) being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA), were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G(2)/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G(2) phase. G(2) arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G(2) to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM) labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G(2) phase, resulting in apoptotic cell death characterized by emergence of cleaved forms of caspase 3 and poly (ADP-ribose) polymerase (PARP). Results presented in this study have thus provided further insights into the intricate network of cellular events by which cinnamaldehydes induce tumor cell death.


Assuntos
Acroleína/análogos & derivados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoatos/farmacologia , Proteínas Fúngicas/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Tubulina (Proteína)/genética , Fatores de Virulência/genética , Acroleína/síntese química , Acroleína/farmacologia , Antineoplásicos/síntese química , Benzoatos/síntese química , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Humanos , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA