Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 36(10): 2205-2211, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180510

RESUMO

Interbreeding between hatchery-reared and wild fish, through deliberate stocking or escapes from fish farms, can result in rapid phenotypic and gene expression changes in hybrids, but the underlying mechanisms are unknown. We assessed if one generation of captive breeding was sufficient to generate inter- and/or transgenerational epigenetic modifications in Atlantic salmon. We found that the sperm of wild and captive-reared males differed in methylated regions consistent with early epigenetic signatures of domestication. Some of the epigenetic marks that differed between hatchery and wild males affected genes related to transcription, neural development, olfaction, and aggression, and were maintained in the offspring beyond developmental reprogramming. Our findings suggest that rearing in captivity may trigger epigenetic modifications in the sperm of hatchery fish that could explain the rapid phenotypic and genetic changes observed among hybrid fish. Epigenetic introgression via fish sperm represents a previously unappreciated mechanism that could compromise locally adapted fish populations.


Assuntos
Metilação de DNA , Domesticação , Epigênese Genética , Introgressão Genética , Salmão/metabolismo , Animais , Feminino , Masculino
2.
Evol Appl ; 14(8): 2134-2144, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429754

RESUMO

Biological invasions are important causes of biodiversity loss, particularly in remote islands. Brown trout (Salmo trutta) have been widely introduced throughout the Southern Hemisphere, impacting endangered native fauna, particularly galaxiid fishes, through predation and competition. However, due to their importance for sport fishing and aquaculture farming, attempts to curtail the impacts of invasive salmonids have generally been met with limited support and the best prospects for protecting native galaxiids is to predict where and how salmonids might disperse. We analysed 266 invasive brown trout from 14 rivers and ponds across the Falkland Islands as well as 32 trout from three potential source populations, using a panel of 592 single nucleotide polymorphisms (SNPs) and acoustic tagging, to ascertain their origins and current patterns of dispersal. We identified four genetically distinct clusters with high levels of genetic diversity and low admixture, likely reflecting the different origins of the invasive brown trout populations. Our analysis suggests that many trout populations in the Falklands may have originated from one of the donor populations analysed (River Wey). The highest genetic diversity was observed in the rivers with the greatest number of introductions and diverse origins, while the lowest diversity corresponded to a location without documented introductions, likely colonized by natural dispersal. High levels of gene flow indicated widespread migration of brown trout across the Falkland Islands, likely aided by anadromous dispersal. This is supported by data from acoustically tagged fish, three of which were detected frequently moving between two rivers ~26 km apart. Our results suggest that, without containment measures, brown trout may invade the last remaining refuges for the native endangered Aplochiton spp. We provide new insights into the origin and dispersal of invasive brown trout in the Falkland Islands that can pave the way for a targeted approach to limit their impact on native fish fauna.

3.
Microorganisms ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946205

RESUMO

Gill disorders have become more prevalent and widespread in finfish aquaculture in recent years. Their aetiology is often considered to be multifactorial. Effective diagnosis, control and prevention are hindered by the lack of standardised methodologies to characterise the aetiological agents, which produce an array of clinical and pathological presentations. The aim of this study was to define a novel gross pathological scoring system suitable for field-based macroscopic assessment of complex or multifactorial gill disease in farmed Atlantic salmon, using samples derived from a gill disease outbreak in Chile. Clinical assessment of gross gill morphology was performed, and gill samples were collected for qPCR and histology. A novel total gill scoring system was developed, which assesses gross pathological changes combining both the presumptive or healed amoebic gill disease (AGD) and the presence of other types of gill lesions. This scoring system offers a standardised approach to characterise the severe proliferative pathologies in affected gills. This total gill scoring system can substantially contribute to the development of robust mitigation strategies and could be used as an indicator trait for incorporating resistance to multifactorial gill disease into breeding goals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA