Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Curr Opin Clin Nutr Metab Care ; 24(6): 555-562, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34456247

RESUMO

PURPOSE OF REVIEW: Stores of glucose (Glc) in our body are small compared with protein and lipid. Therefore, at times of famines or trauma/disease-related starvation, glucose utilization must be limited only to pathways that can only run with glucose carbon as substrate. We will try to outline how insulin resistance drives these pathways and inhibits glucose oxidation in the stressed organism. RECENT FINDINGS: Glc is a basic substrate for a variety of other biomolecules like nucleic acids, amino acids, proteoglycans, mucopolysaccharides and lipids. It is essential for the formation of reducing equivalents, indispensable for anabolic, antioxidative, regulatory and immune processes. As a result, a continuous Glc turnover/cycle is essential to secure at all times the Glc requirements for nonoxidative pathways mentioned above but then requires introduction of extra glucose or other intermediates into the cycle. The production of ATP through complete Glc oxidation occurs only when Glc intake is higher than required for its nonoxidative metabolism. Insulin resistance and decreased Glc oxidation indicate that requirements of Glc for anabolic pathways are high. SUMMARY: Glc is an important building block for anabolic reactions and substrate for reducing equivalents formation. Insulin resistance prevents irreversible Glc oxidation and stimulates Glc production during stress or growth. Glc is only oxidized when intake is in excess of its anabolic requirements.


Assuntos
Glucose , Resistência à Insulina , Aminoácidos , Humanos , Oxirredução , Proteínas/metabolismo
2.
Drug Chem Toxicol ; 40(4): 448-456, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27960556

RESUMO

CONTEXT: Acetaminophen (APAP) hepatotoxicity is often studied in primary cultures of hepatocytes of various species, but there are only few works comparing interspecies differences in susceptibility of hepatocytes to APAP in vitro. OBJECTIVES: The aim of our work was to compare hepatotoxicity of APAP in rat and mouse hepatocytes in primary cultures. MATERIALS AND METHODS: Hepatocytes isolated from male Wistar rats and C57Bl/6J mice were exposed to APAP for up to 24 h. We determined lactate dehydrogenase (LDH) activity in culture medium, activity of cellular dehydrogenases (WST-1) and activity of caspases 3 in cell lysate as markers of cell damage/death. We assessed content of intracellular reduced glutathione, production of reactive oxygen species (ROS) and malondialdehyde (MDA). Respiration of digitonin-permeabilized hepatocytes was measured by high resolution respirometry and mitochondrial membrane potential (MMP) was visualized (JC-1). RESULTS: APAP from concentrations of 2.5 and 0.75 mmol/L induced a decrease in viability of rat (p < 0.001) and mouse (p < 0.001) hepatocytes (WST-1), respectively. In contrast to rat hepatocytes, there was no activation of caspase-3 in mouse hepatocytes after APAP treatment. Earlier damage to plasma membrane and faster depletion of reduced glutathione were detected in mouse hepatocytes. Mouse hepatocytes showed increased glutamate + malate-driven respiration in state 4 and higher susceptibility of the outer mitochondrial membrane (OMM) to APAP-induced injury. CONCLUSION: APAP displayed dose-dependent toxicity in hepatocytes of both species. Mouse hepatocytes in primary culture however had approximately three-fold higher susceptibility to the toxic effect of APAP when compared to rat hepatocytes.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Membrana Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glutationa/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Oxirredução , Ratos Wistar , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
3.
J Bioenerg Biomembr ; 48(4): 363-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27530389

RESUMO

A compound with promising anticancer properties, 3-bromopyruvate (3-BP) is a synthetic derivative of a pyruvate molecule; however, its toxicity in non-malignant cells has not yet been fully elucidated. Therefore, we elected to study the effects of 3-BP on primary hepatocytes in monolayer cultures, permeabilized hepatocytes and isolated mitochondria. After a 1-h treatment with 100 µM 3-BP cell viability of rat hepatocytes was decreased by 30 % as measured by the WST-1 test (p < 0.001); after 3-h exposure to ≥200 µM 3-BP lactate dehydrogenase leakage was increased (p < 0.001). Reactive oxygen species production was increased in the cell cultures after a 1-h treatment at concentrations ≥100 µmol/l (p < 0.01), and caspase 3 activity was increased after a 20-h incubation with 150 µM and 200 µM 3-BP (p < 0.001). This toxic effect of 3-BP was also proved using primary mouse hepatocytes. In isolated mitochondria, 3-BP induced a dose- and time-dependent decrease of mitochondrial membrane potential during a 10-min incubation both with Complex I substrates glutamate + malate or Complex II substrate succinate, although this decrease was more pronounced with the latter. We also measured the effect of 3-BP on respiration of isolated mitochondria. ADP-activated respiration was inhibited by 20 µM 3-BP within 10 min. Similar effects were also found in permeabilized hepatocytes of both species.


Assuntos
Hepatócitos/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Piruvatos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/citologia , Hepatócitos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Doenças Mitocondriais/fisiopatologia , Piruvatos/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
4.
Nutrients ; 16(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38892539

RESUMO

BACKGROUND: Since many acutely admitted older adults display signs of dehydration, treatment using balanced crystalloids is an important part of medical care. Additionally, many of these patients suffer from chronic malnutrition. We speculated that the early addition of glucose might ameliorate the hospital-related drop of caloric intake and modify their catabolic status. METHODS: We included patients 78 years and older, admitted acutely for non-traumatic illnesses. The patients were randomized into either receiving balanced crystalloid (PlasmaLyte; group P) or balanced crystalloid enriched with 100 g of glucose per liter (group G). The information about fluid balance and levels of minerals were collected longitudinally. RESULTS: In the G group, a significantly higher proportion of patients developed signs of refeeding syndrome, i.e., drops in phosphates, potassium and/or magnesium when compared to group P (83.3 vs. 16.7%, p < 0.01). The drop in phosphate levels was the most pronounced. The urinalysis showed no differences in the levels of these minerals in the urine, suggesting their uptake into the cells. There were no differences in the in-hospital mortality or in the 1-year mortality. CONCLUSION: The short-term administration of balanced crystalloids with glucose induced an anabolic shift of electrolytes in acutely admitted older adults.


Assuntos
Hidratação , Glucose , Humanos , Idoso , Feminino , Masculino , Idoso de 80 Anos ou mais , Hidratação/métodos , Glucose/metabolismo , Glucose/administração & dosagem , Soluções Cristaloides/administração & dosagem , Equilíbrio Hidroeletrolítico , Síndrome da Realimentação/prevenção & controle , Suplementos Nutricionais , Desidratação/terapia , Mortalidade Hospitalar
5.
Nutrients ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678311

RESUMO

Carbohydrate (CHO) intake in oral and enteral nutrition is regularly reduced in nutritional support of older patients due to the high prevalence of diabetes (usually type 2-T2DM) in this age group. However, CHO shortage can lead to the lack of building blocks necessary for tissue regeneration and other anabolic processes. Moreover, low CHO intake decreases CHO oxidation and can increase insulin resistance. The aim of our current study was to determine the extent to which an increased intake of a rapidly digestible carbohydrate-maltodextrin-affects blood glucose levels monitored continuously for one week in patients with and without T2DM. Twenty-one patients (14 T2DM and seven without diabetes) were studied for two weeks. During the first week, patients with T2DM received standard diabetic nutrition (250 g CHO per day) and patients without diabetes received a standard diet (350 g of CHO per day). During the second week, the daily CHO intake was increased to 400 in T2DM and 500 g in nondiabetic patients by addition of 150 g maltodextrin divided into three equal doses of 50 g and given immediately after the main meal. Plasma glucose level was monitored continually with the help of a subcutaneous sensor during both weeks. The increased CHO intake led to transient postprandial increase of glucose levels in T2DM patients. This rise was more manifest during the first three days of CHO intake, and then the postprandial peak hyperglycemia was blunted. During the night's fasting period, the glucose levels were not influenced by maltodextrin. Supplementation of additional CHO did not influence the percentual range of high glucose level and decreased a risk of hypoglycaemia. No change in T2DM treatment was indicated. The results confirm our assumption that increased CHO intake as an alternative to CHO restriction in type 2 diabetic patients during oral and enteral nutritional support is safe.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Glicemia , Nutrição Enteral/efeitos adversos , Insulina , Carboidratos da Dieta
6.
Biomedicines ; 9(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34944675

RESUMO

Multiple non-aggregatory functions of human platelets (PLT) are widely acknowledged, yet their functional examination is limited mainly due to a lack of standardized isolation and analytic methods. Platelet apheresis (PA) is an established clinical method for PLT isolation aiming at the treatment of bleeding diathesis in severe thrombocytopenia. On the other hand, density gradient centrifugation (DC) is an isolation method applied in research for the analysis of the mitochondrial metabolic profile of oxidative phosphorylation (OXPHOS) in PLT obtained from small samples of human blood. We studied PLT obtained from 29 healthy donors by high-resolution respirometry for comparison of PA and DC isolates. ROUTINE respiration and electron transfer capacity of living PLT isolated by PA were significantly higher than in the DC group, whereas plasma membrane permeabilization resulted in a 57% decrease of succinate oxidation in PA compared to DC. These differences were eliminated after washing the PA platelets with phosphate buffer containing 10 mmol·L-1 ethylene glycol-bis (2-aminoethyl ether)-N,N,N',N'-tetra-acetic acid, suggesting that several components, particularly Ca2+ and fuel substrates, were carried over into the respiratory assay from the serum in PA. A simple washing step was sufficient to enable functional mitochondrial analysis in subsamples obtained from PA. The combination of the standard clinical PA isolation procedure with PLT quality control and routine mitochondrial OXPHOS diagnostics meets an acute clinical demand in biomedical research of patients suffering from thrombocytopenia and metabolic diseases.

7.
Nutrients ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403367

RESUMO

INTRODUCTION: Our study aim was to assess how the macronutrient intake during total parenteral nutrition (TPN) modulates plasma total free fatty acids (FFAs) levels and individual fatty acids in critically ill patients. METHOD: Adult patients aged 18-80, admitted to the intensive care unit (ICU), who were indicated for TPN, with an expected duration of more than three days, were included in the study. Isoenergetic and isonitrogenous TPN solutions were given with a major non-protein energy source, which was glucose (group G) or glucose and lipid emulsions (Smof lipid; group L). Blood samples were collected on days 0, 1, 3, 6, 9, 14, and 28. RESULTS: A significant decrease (p < 0.001) in total FFAs occurred in both groups with a bigger decrease in group G (p < 0.001) from day 0 (0.41 ± 0.19 mmol∙L-1) to day 28 (0.10 ± 0.07 mmol∙L-1). Increased palmitooleic acid and decreased linoleic and docosahexaenoic acids, with a trend of increased mead acid to arachidonic acid ratio, on day 28 were observed in group G in comparison with group L. Group G had an insignificant increase in leptin with no differences in the concentrations of vitamin E, triacylglycerides, and plasminogen activator inhibitor-1. CONCLUSION: Decreased plasma FFA in critically ill patients who receive TPN may result from increased insulin sensitivity with a better effect in group G, owing to higher insulin and glucose dosing and no lipid emulsions. It is advisable to include a lipid emulsion at the latest from three weeks of TPN to prevent essential fatty acid deficiency.


Assuntos
Estado Terminal/terapia , Ácidos Graxos não Esterificados/sangue , Glucose/administração & dosagem , Lipídeos/administração & dosagem , Nutrição Parenteral Total/métodos , Idoso , Emulsões/administração & dosagem , Ácidos Graxos Essenciais/sangue , Ácidos Graxos Essenciais/deficiência , Feminino , Humanos , Resistência à Insulina/fisiologia , Unidades de Terapia Intensiva , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , alfa-Tocoferol/sangue
8.
Methods Mol Biol ; 1782: 137-155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850998

RESUMO

High-Resolution FluoRespirometry is a well-established and versatile approach to study mitochondrial oxygen uptake amperometrically in combination with measurement of fluorescence signals. One of the most frequently applied fluorescent dyes is Amplex UltraRed for monitoring rates of hydrogen peroxide production. Selection of an appropriate mitochondrial respiration medium is of crucial importance, the primary role of which is to support and preserve optimum mitochondrial function. For harmonization of results in a common database, we compared respiration and H2O2 production of permeabilized HEK 293T cells measured in MiR05 (sucrose and K-lactobionate), Buffer Z (K-MES and KCl), MiR07 (combination of MiR05 and Buffer Z), and MiRK03 (KCl). Respiration in a simple substrate-uncoupler-inhibitor titration protocol was identical in MiR05, Buffer Z, and MiR07, whereas oxygen fluxes detected with MiRK03 were consistently lower in all coupling and electron transfer-pathway states. H2O2 production rates were comparable in all four media, while assay sensitivity was comparatively low with MiR05 and MiR07 and higher but declining over time in the other two media. Stability of assay sensitivity over experimental time was highest in MiR05 but slightly less in MiR07. Taken together, MiR05 and Buffer Z yield comparable results on respiration and H2O2 production. Despite the lower sensitivity, MiR05 was selected as the medium of choice for FluoRespirometry due to the highest stability of the sensitivity or calibration constant observed in experiments over periods of up to 2 h.


Assuntos
Meios de Cultura/química , Corantes Fluorescentes/química , Fluorometria/métodos , Mitocôndrias/metabolismo , Animais , Soluções Tampão , Calibragem , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Permeabilidade da Membrana Celular , Respiração Celular , Fluorometria/instrumentação , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxazinas/química , Sensibilidade e Especificidade
9.
Oxid Med Cell Longev ; 2016: 7573131, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28074116

RESUMO

Epigallocatechin gallate (EGCG) is a green tea antioxidant with adverse effects on rat liver mitochondria and hepatocytes at high doses. Here, we assessed whether low doses of EGCG would protect these systems from damage induced by tert-butyl hydroperoxide (tBHP). Rat liver mitochondria or permeabilized rat hepatocytes were pretreated with EGCG and then exposed to tBHP. Oxygen consumption, mitochondrial membrane potential (MMP), and mitochondrial retention capacity for calcium were measured. First, 50 µM EGCG or 0.25 mM tBHP alone increased State 4 Complex I-driven respiration, thus demonstrating uncoupling effects; tBHP also inhibited State 3 ADP-stimulated respiration. Then, the coexposure to 0.25 mM tBHP and 50 µM EGCG induced a trend of further decline in the respiratory control ratio beyond that observed upon tBHP exposure alone. EGCG had no effect on MMP and no effect, in concentrations up to 50 µM, on mitochondrial calcium retention capacity. tBHP led to a decline in both MMP and mitochondrial retention capacity for calcium; these effects were not changed by pretreatment with EGCG. In addition, EGCG dose-dependently enhanced hydrogen peroxide formation in a cell- and mitochondria-free medium. Conclusion. Moderate nontoxic doses of EGCG were not able to protect rat liver mitochondria and hepatocytes from tBHP-induced mitochondrial dysfunction.


Assuntos
Catequina/análogos & derivados , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , terc-Butil Hidroperóxido/toxicidade , Animais , Cálcio/metabolismo , Catequina/farmacologia , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA