Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(50): e2302845120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055741

RESUMO

It has previously been reported that antioxidant vitamins can help reduce the risk of vision loss associated with progression to advanced age-related macular degeneration (AMD), a leading cause of visual impairment among the elderly. Nonetheless, how oxidative stress contributes to the development of choroidal neovascularization (CNV) in some AMD patients and geographic atrophy (GA) in others is poorly understood. Here, we provide evidence demonstrating that oxidative stress cooperates with hypoxia to synergistically stimulate the accumulation of hypoxia-inducible factor (HIF)-1α in the retinal pigment epithelium (RPE), resulting in increased expression of the HIF-1-dependent angiogenic mediators that promote CNV. HIF-1 inhibition blocked the expression of these angiogenic mediators and prevented CNV development in an animal model of ocular oxidative stress, demonstrating the pathological role of HIF-1 in response to oxidative stress stimulation in neovascular AMD. While human-induced pluripotent stem cell (hiPSC)-derived RPE monolayers exposed to chemical oxidants resulted in disorganization and disruption of their normal architecture, RPE cells proved remarkably resistant to oxidative stress. Conversely, equivalent doses of chemical oxidants resulted in apoptosis of hiPSC-derived retinal photoreceptors. Pharmacologic inhibition of HIF-1 in the mouse retina enhanced-while HIF-1 augmentation reduced-photoreceptor apoptosis in two mouse models for oxidative stress, consistent with a protective role for HIF-1 in photoreceptors in patients with advanced dry AMD. Collectively, these results suggest that in patients with AMD, increased expression of HIF-1α in RPE exposed to oxidative stress promotes the development of CNV, but inadequate HIF-1α expression in photoreceptors contributes to the development of GA.


Assuntos
Neovascularização de Coroide , Atrofia Geográfica , Degeneração Macular Exsudativa , Camundongos , Animais , Humanos , Idoso , Epitélio Pigmentado da Retina/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Inibidores da Angiogênese , Degeneração Macular Exsudativa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual , Neovascularização de Coroide/genética , Neovascularização de Coroide/prevenção & controle , Neovascularização de Coroide/metabolismo , Oxidantes/metabolismo , Hipóxia/metabolismo
2.
J Oral Pathol Med ; 53(6): 366-375, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763759

RESUMO

BACKGROUND: Angiopoietin-like 4 is a molecular hallmark that correlates with the growth and metastasis of head and neck squamous cell carcinoma, one of the most prevalent cancers worldwide. However, the molecular mechanisms by which angiopoietin-like 4 promotes head and neck squamous cell carcinoma tumorigenesis are unclear. METHODS: Using well-characterized cell lines of head and neck squamous cell carcinoma development, including human normal oral keratinocytes, dysplastic oral keratinocytes, oral leukoplakia-derived oral keratinocytes, and head and neck squamous cell carcinoma cell lines, HN13, HN6, HN4, HN12, and CAL27, we investigated the signaling pathways upstream and downstream of angiopoietin-like 4-induced head and neck squamous cell carcinoma tumorigenesis. RESULTS: We found that both epidermal growth factor receptor ligands, epithelial growth factor, and amphiregulin led to angiopoietin-like 4 upregulation in normal oral keratinocytes and dysplastic oral keratinocytes and cooperated with the activation of hypoxia-inducible factor-1 in this effect. Interestingly, amphiregulin and angiopoietin-like 4 were increased in dysplastic oral keratinocytes and head and neck squamous cell carcinoma cell lines, and amphiregulin-induced activation of cell proliferation was dependent on angiopoietin-like 4. Although both p38 mitogen-activated protein kinases (p38 MAPK) and protein kinase B (AKT) were activated by angiopoietin-like 4, only pharmacological inhibition of p38 MAPK was sufficient to prevent head and neck squamous cell carcinoma cell proliferation and migration. We further observed that angiopoietin-like 4 promoted the secretion of interleukin 11 (IL-11), interleukin 12 (IL-12), interleukin-1 alpha (IL-1α), vascular endothelial growth factor, platelet-derived growth factor (PDGF), and tumour necrosis factor alpha (TNF-α), cytokines and chemokines previously implicated in head and neck squamous cell carcinoma pathogenesis. CONCLUSION: Our results demonstrate that angiopoietin-like 4 is a downstream effector of amphiregulin and promotes head and neck squamous cell carcinoma development both through direct activation of p38 kinase as well as paracrine mechanisms.


Assuntos
Anfirregulina , Proteína 4 Semelhante a Angiopoietina , Movimento Celular , Proliferação de Células , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Anfirregulina/farmacologia , Anfirregulina/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Transdução de Sinais , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Receptores ErbB/metabolismo
3.
Nature ; 552(7684): 248-252, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29211719

RESUMO

Diabetic retinopathy is an important cause of blindness in adults, and is characterized by progressive loss of vascular cells and slow dissolution of inter-vascular junctions, which result in vascular leakage and retinal oedema. Later stages of the disease are characterized by inflammatory cell infiltration, tissue destruction and neovascularization. Here we identify soluble epoxide hydrolase (sEH) as a key enzyme that initiates pericyte loss and breakdown of endothelial barrier function by generating the diol 19,20-dihydroxydocosapentaenoic acid, derived from docosahexaenoic acid. The expression of sEH and the accumulation of 19,20-dihydroxydocosapentaenoic acid were increased in diabetic mouse retinas and in the retinas and vitreous humour of patients with diabetes. Mechanistically, the diol targeted the cell membrane to alter the localization of cholesterol-binding proteins, and prevented the association of presenilin 1 with N-cadherin and VE-cadherin, thereby compromising pericyte-endothelial cell interactions and inter-endothelial cell junctions. Treating diabetic mice with a specific sEH inhibitor prevented the pericyte loss and vascular permeability that are characteristic of non-proliferative diabetic retinopathy. Conversely, overexpression of sEH in the retinal Müller glial cells of non-diabetic mice resulted in similar vessel abnormalities to those seen in diabetic mice with retinopathy. Thus, increased expression of sEH is a key determinant in the pathogenesis of diabetic retinopathy, and inhibition of sEH can prevent progression of the disease.


Assuntos
Retinopatia Diabética/enzimologia , Retinopatia Diabética/prevenção & controle , Epóxido Hidrolases/antagonistas & inibidores , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Progressão da Doença , Ácidos Docosa-Hexaenoicos/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Ependimogliais , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/patologia , Presenilina-1/metabolismo , Retina/efeitos dos fármacos , Retina/enzimologia , Retina/metabolismo , Retina/patologia , Solubilidade , Corpo Vítreo/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(23): E3030-9, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26039997

RESUMO

Diabetic eye disease is the most common cause of severe vision loss in the working-age population in the developed world, and proliferative diabetic retinopathy (PDR) is its most vision-threatening sequela. In PDR, retinal ischemia leads to the up-regulation of angiogenic factors that promote neovascularization. Therapies targeting vascular endothelial growth factor (VEGF) delay the development of neovascularization in some, but not all, diabetic patients, implicating additional factor(s) in PDR pathogenesis. Here we demonstrate that the angiogenic potential of aqueous fluid from PDR patients is independent of VEGF concentration, providing an opportunity to evaluate the contribution of other angiogenic factor(s) to PDR development. We identify angiopoietin-like 4 (ANGPTL4) as a potent angiogenic factor whose expression is up-regulated in hypoxic retinal Müller cells in vitro and the ischemic retina in vivo. Expression of ANGPTL4 was increased in the aqueous and vitreous of PDR patients, independent of VEGF levels, correlated with the presence of diabetic eye disease, and localized to areas of retinal neovascularization. Inhibition of ANGPTL4 expression reduced the angiogenic potential of hypoxic Müller cells; this effect was additive with inhibition of VEGF expression. An ANGPTL4 neutralizing antibody inhibited the angiogenic effect of aqueous fluid from PDR patients, including samples from patients with low VEGF levels or receiving anti-VEGF therapy. Collectively, our results suggest that targeting both ANGPTL4 and VEGF may be necessary for effective treatment or prevention of PDR and provide the foundation for studies evaluating aqueous ANGPTL4 as a biomarker to help guide individualized therapy for diabetic eye disease.


Assuntos
Angiopoietinas/fisiologia , Retinopatia Diabética/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiopoietinas/metabolismo , Retinopatia Diabética/metabolismo , Olho/irrigação sanguínea , Olho/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/sangue
5.
Handb Exp Pharmacol ; 242: 271-307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27783271

RESUMO

Recent breakthroughs in our understanding of the molecular pathophysiology of retinal vascular disease have allowed us to specifically target pathological angiogenesis while minimizing damage to the neurosensory retina. This is perhaps best exemplified by the development of therapies targeting the potent angiogenic growth factor and vascular permeability mediator, vascular endothelial growth factor (VEGF). Anti-VEGF therapies, initially introduced for the treatment of choroidal neovascularization in patients with age-related macular degeneration, have also had a dramatic impact on the management of retinal vascular disease and are currently an indispensable component for the treatment of macular edema in patients with diabetic eye disease and retinal vein occlusions. Emerging evidence supports expanding the use of therapies targeting VEGF for the treatment of retinal neovascularization in patients with diabetic retinopathy and retinopathy of prematurity. However, VEGF is among a growing list of angiogenic and vascular hyperpermeability factors that promote retinal vascular disease. Many of these mediators are expressed in response to stabilization of a single family of transcription factors, the hypoxia-inducible factors (HIFs), that regulate the expression of these angiogenic stimulators. Here we review the basic principles driving pathological angiogenesis and discuss the current state of retinal anti-angiogenic pharmacotherapy as well as future directions.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Humanos , Recém-Nascido , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
6.
Ophthalmology ; 123(3): 625-34.e1, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26712560

RESUMO

PURPOSE: To assess changes in retinal nonperfusion (RNP) in patients with retinal vein occlusion (RVO) treated with ranibizumab. DESIGN: Secondary outcome measure in randomized double-masked controlled clinical trial. PARTICIPANTS: Thirty-nine patients with central RVO (CRVO) and 42 with branch RVO (BRVO). METHODS: Subjects were randomized to 0.5 or 2.0 mg ranibizumab every month for 6 months and then were re-randomized to pro re nata (PRN) groups receiving either ranibizumab plus scatter laser photocoagulation or ranibizumab alone for an additional 30 months. MAIN OUTCOME MEASURES: Comparison of percentage of patients with increased or decreased area of RNP in patients with RVO treated with 0.5 versus 2.0 mg ranibizumab, during monthly injections versus ranibizumab PRN, and in patients treated with ranibizumab PRN versus ranibizumab PRN plus laser. RESULTS: In RVO patients given monthly injections of 0.5 or 2.0 mg ranibizumab for 6 months, there was no significant difference in the percentage who showed reduction or increase in the area of RNP. However, regardless of dose, during the 6-month period of monthly injections, a higher percentage of patients showed a reduction in area of RNP and a lower percentage showed an increase in area of RNP compared with subsequent periods of ranibizumab PRN treatment. After the 6-month period of monthly injections, BRVO patients, but not CRVO patients, randomized to ranibizumab PRN plus laser showed significantly less progression of RNP compared with patients treated with ranibizumab PRN. CONCLUSIONS: Regardless of dose (0.5 or 2.0 mg), monthly ranibizumab injections promote improvement and reduce progression of RNP compared with PRN injections. The addition of scatter photocoagulation to ranibizumab PRN may reduce progression of RNP in patients with BRVO, but a statistically significant reduction was not seen in patients with CRVO.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Ranibizumab/uso terapêutico , Oclusão da Veia Retiniana/tratamento farmacológico , Veia Retiniana/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Idoso , Terapia Combinada , Progressão da Doença , Método Duplo-Cego , Feminino , Angiofluoresceinografia , Seguimentos , Humanos , Injeções Intravítreas , Fotocoagulação a Laser , Masculino , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Oclusão da Veia Retiniana/fisiopatologia , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
7.
Proc Natl Acad Sci U S A ; 110(36): E3425-34, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959876

RESUMO

Vision loss from ischemic retinopathies commonly results from the accumulation of fluid in the inner retina [macular edema (ME)]. Although the precise events that lead to the development of ME remain under debate, growing evidence supports a role for an ischemia-induced hyperpermeability state regulated, in part, by VEGF. Monthly treatment with anti-VEGF therapies is effective for the treatment of ME but results in a major improvement in vision in a minority of patients, underscoring the need to identify additional therapeutic targets. Using the oxygen-induced retinopathy mouse model for ischemic retinopathy, we provide evidence showing that hypoxic Müller cells promote vascular permeability by stabilizing hypoxia-inducible factor-1α (HIF-1α) and secreting angiogenic cytokines. Blocking HIF-1α translation with digoxin inhibits the promotion of endothelial cell permeability in vitro and retinal edema in vivo. Interestingly, Müller cells require HIF--but not VEGF--to promote vascular permeability, suggesting that other HIF-dependent factors may contribute to the development of ME. Using gene expression analysis, we identify angiopoietin-like 4 (ANGPTL4) as a cytokine up-regulated by HIF-1 in hypoxic Müller cells in vitro and the ischemic inner retina in vivo. ANGPTL4 is critical and sufficient to promote vessel permeability by hypoxic Müller cells. Immunohistochemical analysis of retinal tissue from patients with diabetic eye disease shows that HIF-1α and ANGPTL4 localize to ischemic Müller cells. Our results suggest that ANGPTL4 may play an important role in promoting vessel permeability in ischemic retinopathies and could be an important target for the treatment of ME.


Assuntos
Angiopoietinas/metabolismo , Permeabilidade Capilar , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios Retinianos/metabolismo , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Animais , Western Blotting , Hipóxia Celular , Células Cultivadas , Retinopatia Diabética/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Neurônios Retinianos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Angiogenesis ; 18(4): 477-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092770

RESUMO

Kaposi's sarcoma (KS) is a vascular neoplasm caused by infection of endothelial or endothelial precursor cells with the Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8). Research efforts have focused on defining the molecular events explaining how KSHV promotes pathological angiogenesis and KS tumor formation. mTOR/HIF-1 is a fundamental pathway driving these processes through the upregulation of angiogenic and inflammatory proteins, including VEGF, ANGPTL4, and ANGPT2. Interestingly, HIF-1 has also been implicated in the upregulation of metabolic genes associated with aerobic glycolysis and the growth of solid tumors. However, whether HIF-1 plays a role in regulating cell metabolism in KS remains unexplored. Here, we show that the HIF-1 metabolic effector, pyruvate kinase 2 (PKM2), is upregulated upon KSHV infection of endothelial cells and is necessary to maintain aerobic glycolysis in infected cells. We further demonstrate that PKM2 regulates KS angiogenic phenotype by acting as a coactivator of HIF-1 and increasing the levels of HIF-1 angiogenic factors, including VEGF. Indeed, inhibition of PKM2 expression blocked endothelial cell migration and differentiation and the angiogenic potential of KSHV-infected cells. We also investigated whether PKM2 regulates the angiogenic dysregulation induced by the KSHV-encoded G protein-coupled receptor (vGPCR), a viral oncogene that promotes Kaposi's sarcomagenesis through the upregulation of HIF angiogenic factors. Interestingly, we found that PKM2 controls vGPCR-induced VEGF paracrine secretion and vGPCR oncogenesis. Our findings provide a molecular mechanism for how HIF-1 dysregulation fuels both angiogenesis and tumor metabolism in KS and support further investigations on therapeutic approaches targeting HIF-1 and PKM2 for KS treatment.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Herpesvirus Humano 8/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Piruvato Quinase/biossíntese , Sarcoma de Kaposi/metabolismo , Regulação para Cima , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/patologia , Sarcoma de Kaposi/patologia
9.
Ophthalmology ; 122(7): 1426-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972260

RESUMO

PURPOSE: To determine whether scatter and grid laser photocoagulation (laser) adds benefit to ranibizumab injections in patients with macular edema from retinal vein occlusion (RVO) and to compare 0.5-mg with 2.0-mg ranibizumab. DESIGN: Randomized, double-masked, controlled clinical trial. PARTICIPANTS: Thirty-nine patients with central RVO (CRVO) and 42 with branch RVO (BRVO). METHODS: Subjects were randomized to 0.5 mg or 2.0 mg ranibizumab every 4 weeks for 24 weeks and re-randomized to pro re nata ranibizumab plus laser or ranibizumab alone. MAIN OUTCOME MEASURES: Mean change from baseline best-corrected visual acuity (BCVA) at week 24 for BCVA at weeks 48, 96, and 144 for second randomization. RESULTS: Mean improvement from baseline BCVA at week 24 was 15.5 and 15.8 letters in the 0.5-mg and 2.0-mg CRVO groups, and 12.1 and 14.6 letters in the 0.5-mg and 2.0-mg BRVO groups. For CRVO, but not BRVO, there was significantly greater reduction from baseline mean central subfield thickness (CST) in the 2.0-mg versus 0.5-mg group (396.1 vs. 253.5 µm; P = 0.03). For the second randomization in CRVO patients, there was no significant difference from week 24 BCVA in the ranibizumab plus laser versus the ranibizumab only groups at week 48 (-3.3 vs. 0.0 letters), week 96 (+0.69 vs. -1.6 letters), or week 144 (+0.4 vs. -6.7 letters), and a significant increase from week 24 mean CST at week 48 (+94.7 vs. +15.2 µm; P = 0.05) but not weeks 96 or 144. For BRVO, there was a significant reduction from week 24 mean BCVA in ranibizumab plus laser versus ranibizumab at week 48 (-7.5 vs. +2.8; P < 0.01) and week 96 (-2.0 vs. +4.8; P < 0.03), but not week 144, and there were no differences in mean CST change from week 24 at weeks 48, 96, or 144. Laser failed to increase edema resolution or to reduce the ranibizumab injections between weeks 24 and 144. CONCLUSIONS: In patients with macular edema resulting from RVO, there was no short-term clinically significant benefit from monthly injections of 2.0-mg versus 0.5-mg ranibizumab injections and no long-term benefit in BCVA, resolution of edema, or number of ranibizumab injections obtained by addition of laser treatment to ranibizumab.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Fotocoagulação a Laser , Edema Macular/terapia , Oclusão da Veia Retiniana/terapia , Idoso , Terapia Combinada , Método Duplo-Cego , Feminino , Humanos , Injeções Intravítreas , Edema Macular/diagnóstico , Edema Macular/tratamento farmacológico , Edema Macular/cirurgia , Masculino , Pessoa de Meia-Idade , Ranibizumab , Oclusão da Veia Retiniana/diagnóstico , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/cirurgia , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual/fisiologia
10.
Cancer Cell ; 10(2): 133-43, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16904612

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV), the infectious causative agent of Kaposi's sarcoma (KS), encodes a G protein-coupled receptor (vGPCR) implicated in the initiation of KS. Here we demonstrate that Kaposi's sarcomagenesis involves stimulation of tuberin (TSC2) phosphorylation by vGPCR, promoting the activation of mTOR through both direct and paracrine mechanisms. Pharmacologic inhibition of mTOR with rapamycin prevented vGPCR sarcomagenesis, while overactivation of this pathway was sufficient to render endothelial cells oncogenic. Moreover, mice haploinsufficient for TSC2 are predisposed to vascular sarcomas remarkably similar to KS. Collectively, these results implicate mTOR in KS initiation and suggest that the sarcomagenic potential of KSHV may be a direct consequence of the profound sensitivity of endothelial cells to vGPCR dysregulation of the TSC2/mTOR pathway.


Assuntos
Transformação Celular Neoplásica , Células Endoteliais/patologia , Herpesvirus Humano 8/genética , Proteínas Quinases/metabolismo , Receptores de Quimiocinas/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Virais/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Proteína Oncogênica v-akt/antagonistas & inibidores , Proteína Oncogênica v-akt/metabolismo , Comunicação Parácrina , Fosforilação , Proteínas Quinases/genética , Receptores de Quimiocinas/genética , Sarcoma de Kaposi/patologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Virais/genética
11.
Sci Transl Med ; 16(737): eadk3868, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446902

RESUMO

Anti-vascular endothelial growth factor therapy has had a substantial impact on the treatment of choroidal neovascularization (CNV) in patients with neovascular age-related macular degeneration (nAMD), the leading cause of vision loss in older adults. Despite treatment, many patients with nAMD still develop severe and irreversible visual impairment because of the development of subretinal fibrosis. We recently reported the anti-inflammatory and antiangiogenic effects of inhibiting the gene encoding adenosine receptor 2A (Adora2a), which has been implicated in cardiovascular disease. Here, using two mouse models of subretinal fibrosis (mice with laser injury-induced CNV or mice with a deficiency in the very low-density lipoprotein receptor), we found that deletion of Adora2a either globally or specifically in endothelial cells reduced subretinal fibrosis independently of angiogenesis. We showed that Adora2a-dependent endothelial-to-mesenchymal transition contributed to the development of subretinal fibrosis in mice with laser injury-induced CNV. Deficiency of Adora2a in cultured mouse and human choroidal endothelial cells suppressed induction of the endothelial-to-mesenchymal transition. A metabolomics analysis of cultured human choroidal endothelial cells showed that ADORA2A knockdown with an siRNA reversed the increase in succinate because of decreased succinate dehydrogenase B expression under fibrotic conditions. Pharmacological inhibition of ADORA2A with a small-molecule KW6002 in both mouse models recapitulated the reduction in subretinal fibrosis observed in mice with genetic deletion of Adora2a. ADORA2A inhibition may be a therapeutic approach to treat subretinal fibrosis associated with nAMD.


Assuntos
Doenças Cardiovasculares , Neovascularização de Coroide , Humanos , Animais , Camundongos , Idoso , Células Endoteliais , Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Transição Endotélio-Mesênquima
12.
Nat Commun ; 15(1): 6150, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034314

RESUMO

Non-neovascular or dry age-related macular degeneration (AMD) is a multi-factorial disease with degeneration of the aging retinal-pigmented epithelium (RPE). Lysosomes play a crucial role in RPE health via phagocytosis and autophagy, which are regulated by transcription factor EB/E3 (TFEB/E3). Here, we find that increased AKT2 inhibits PGC-1α to downregulate SIRT5, which we identify as an AKT2 binding partner. Crosstalk between SIRT5 and AKT2 facilitates TFEB-dependent lysosomal function in the RPE. AKT2/SIRT5/TFEB pathway inhibition in the RPE induced lysosome/autophagy signaling abnormalities, disrupted mitochondrial function and induced release of debris contributing to drusen. Accordingly, AKT2 overexpression in the RPE caused a dry AMD-like phenotype in aging Akt2 KI mice, as evident from decline in retinal function. Importantly, we show that induced pluripotent stem cell-derived RPE encoding the major risk variant associated with AMD (complement factor H; CFH Y402H) express increased AKT2, impairing TFEB/TFE3-dependent lysosomal function. Collectively, these findings suggest that targeting the AKT2/SIRT5/TFEB pathway may be an effective therapy to delay the progression of dry AMD.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Degeneração Macular , Proteínas Proto-Oncogênicas c-akt , Epitélio Pigmentado da Retina , Transdução de Sinais , Sirtuínas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Humanos , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Lisossomos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino
13.
Proc Natl Acad Sci U S A ; 107(32): 14363-8, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660728

RESUMO

Kaposi's sarcoma (KS) is an enigmatic vascular tumor thought to be a consequence of dysregulated expression of the human herpesvirus-8 (HHV-8 or KSHV)-encoded G protein-coupled receptor (vGPCR). Indeed, transgenic animals expressing vGPCR manifest vascular tumors histologically identical to human KS, with expression of the viral receptor limited to a few cells, suggestive of a paracrine mechanism for vGPCR tumorigenesis. Both human and vGPCR experimental KS lesions are characterized by prominent angiogenesis and vascular permeability attributed to the release of angiogenic molecules, most notably vascular endothelial growth factor. However, the relative contribution of these paracrine mediators to the angiogenic and exudative phenotype of KS lesions remains unclear. Here we show that vGPCR up-regulation of Angiopoietin-like 4 (ANGPTL4) plays a prominent role in promoting the angiogenesis and vessel permeability observed in KS. Indeed, ANGPTL4 expression is a hallmark of vGPCR experimental and human KS lesions. Inhibition of ANGPTL4 effectively blocks vGPCR promotion of the angiogenic switch and vascular leakage in vitro and tumorigenesis in vivo. These observations suggest that ANGPTL4 is a previously unrecognized target for the treatment of patients with KS. As angiogenesis and increased vessel permeability are common themes in all solid tumors, these findings may have a broad impact on our understanding and treatment of cancer.


Assuntos
Angiopoietinas/biossíntese , Permeabilidade Capilar , Neovascularização Patológica , Receptores de Quimiocinas/fisiologia , Sarcoma de Kaposi/fisiopatologia , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Comunicação Parácrina , Fator A de Crescimento do Endotélio Vascular
14.
Int J Ophthalmol ; 16(2): 233-237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816213

RESUMO

AIM: To characterize spectral-domain optical coherence tomography (SD-OCT) features of chorioretinal folds in orbital mass imaged using enhanced depth imaging (EDI). METHODS: Prospective observational case-control study was conducted in 20 eyes of 20 patients, the uninvolved eye served as a control. All the patients underwent clinical fundus photography, computed tomography, EDI SD-OCT imaging before and after surgery. Two patients with cavernous hemangiomas underwent intratumoral injection of bleomycin A5; the remaining patients underwent tumor excision. Patients were followed 1 to 14mo following surgery (average follow up, 5.8mo). RESULTS: Visual acuity prior to surgery ranged from 20/20 to 20/200. Following surgery, 5 patients' visual acuity remained unchanged while the remaining 15 patients had a mean letter improvement of 10 (range 4 to 26 letters). Photoreceptor inner/outer segment defects were found in 10 of 15 patients prior to surgery. Following surgical excision, photoreceptor inner/outer segment defects fully resolved in 8 of these 10 patients. CONCLUSION: Persistence of photoreceptor inner/outer segment defects caused by compression of the globe by an orbital mass can be associated with reduced visual prognosis. Our findings suggest that photoreceptor inner/outer segment defects on EDI SD-OCT could be an indicator for immediate surgical excision of an orbital mass causing choroidal compression.

15.
J Clin Invest ; 133(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36413411

RESUMO

BACKGROUNDStudies assessing the efficacy of therapies for neovascular age-related macular degeneration (nvAMD) have demonstrated that aflibercept may have a longer treatment interval than its less-expensive alternative, bevacizumab. However, whether this benefit justifies the additional cost of aflibercept remains under debate. We have recently reported that a treat-and-extend-pause/monitor approach can be used to successfully wean 31% of patients with nvAMD off anti-VEGF therapy. Here, we examined whether the choice of therapy influences the outcomes of this approach.METHODSIn this retrospective analysis, 122 eyes of 106 patients with nvAMD underwent 3 consecutive monthly injections with either aflibercept (n = 70) or bevacizumab (n = 52), followed by a treat-and-extend protocol, in which the decision to extend the interval between treatments was based on visual acuity, clinical exam, and the presence or absence of fluid on optical coherence tomography. Eyes that remained stable 12 weeks from their prior treatment were given a 6-week trial of holding further treatment, followed by quarterly monitoring. Treatment was resumed for worsening vision, clinical exam, or optical coherence tomography findings.RESULTSAt the end of 1 year, eyes receiving bevacizumab had similar vision but required more injections (8.7 ± 0.3 treatments vs. 7.2 ± 0.3 treatments) compared with eyes receiving aflibercept. However, eyes treated with aflibercept were almost 3 times more likely to be weaned off treatment (43% vs. 15%) compared with eyes treated with bevacizumab at the end of 1 year.CONCLUSIONThese observations expose an advantage of aflibercept over bevacizumab and have important clinical implications for the selection of therapy for patients with nvAMD.FUNDINGThis work was supported by the National Eye Institute, NIH grants R01EY029750 and R01EY025705, Research to Prevent Blindness, the Alcon Young Investigator Award from the Alcon Research Institute, and the Branna and Irving Sisenwein Professorship in Ophthalmology.


Assuntos
Inibidores da Angiogênese , Degeneração Macular , Humanos , Bevacizumab/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Ranibizumab/efeitos adversos , Estudos Retrospectivos , Proteínas Recombinantes de Fusão/uso terapêutico , Degeneração Macular/tratamento farmacológico , Resultado do Tratamento , Seguimentos
16.
Cell Signal ; 108: 110697, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169211

RESUMO

OBJECTIVES: The molecular mechanisms whereby angiopoietin-like 4 (ANGPTL4), a pluripotent protein implicated in cancer development, contributes to head and neck squamous cell carcinoma (HNSCC) growth and dissemination are unclear. MATERIALS AND METHODS: We investigated ANGPTL4 expression in human normal oral keratinocytes (NOKs), dysplastic oral keratinocytes (DOKs), oral leukoplakia cells (LEUK1), and HNSCC cell lines, as well as in tissue biopsies from patients with oral dysplasia, and primary and metastatic HNSCC. We further examined the contribution of ANGPTL4 cancer progression in an HNSCC orthotopic floor-of mouth tumor model and the signaling pathways linking ANGPTL4 to cancer cell migration. RESULTS: ANGPTL4 expression was upregulated in premalignant DOKs and HNSCC cell lines compared to NOKs and was increased in tissue biopsies from patients with oral dysplasia, as well as in primary and metastatic HNSCC. We also observed that downregulation of ANGPTL4 expression inhibited primary and metastatic cancer growth in an HNSCC orthotopic tumor model. Interestingly, ANGPTL4 binding to the neuropilin1 (NRP1) receptor led to phosphorylation of the focal adhesion protein, paxillin (PXN), and tumor cell migration; this was dependent on the tyrosine kinase ABL1. Treatment with the ABL1 inhibitor, dasatinib and small interfering RNA silencing of NRP1 or ABL1 expression blocked PXN phosphorylation and tumor cell migration. CONCLUSION: Our findings suggest an early, sustained, and angiogenesis-independent autocrine role for ANGPTL4 in HNSCC progression and expose ANGPTL4/NRP1/ABL1/PXN as an early molecular marker and vulnerable target for the prevention of HNSCC growth and metastasis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Angiopoietinas/genética , Angiopoietinas/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neuropilina-1/metabolismo , Paxilina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço
17.
Cell Rep ; 42(1): 111976, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640318

RESUMO

Tight glycemic control (TGC), the cornerstone of diabetic management, reduces the incidence and progression of diabetic microvascular disease. However, TGC can also lead to transient episodes of hypoglycemia, which have been associated with adverse outcomes in patients with diabetes. Here, we demonstrate that low glucose levels result in hypoxia-inducible factor (HIF)-1-dependent expression of the glucose transporter, Glut1, in retinal cells. Enhanced nuclear accumulation of HIF-1α was independent of its canonical post-translational stabilization but instead dependent on stimulation of its translation and nuclear localization. In the presence of hypoxia, this physiologic response to low glucose resulted in a marked increase in the secretion of the HIF-dependent vasoactive mediators that promote diabetic retinopathy. Our results provide a molecular explanation for how early glucose control, as well as glycemic variability (i.e., oscillating serum glucose levels), contributes to diabetic eye disease. These observations have important implications for optimizing glucose management in patients with diabetes.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Hipoglicemia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Retinopatia Diabética/metabolismo , Glucose/metabolismo , Hipoglicemia/complicações , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
18.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37227777

RESUMO

Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Neovascularização Retiniana , Humanos , Camundongos , Animais , Acriflavina/metabolismo , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
19.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609254

RESUMO

Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.

20.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345657

RESUMO

Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults and remains an important public health issue worldwide. Here we demonstrate that the expression of stimulator of interferon genes (STING) is increased in patients with DR and animal models of diabetic eye disease. STING has been previously shown to regulate cell senescence and inflammation, key contributors to the development and progression of DR. To investigate the mechanism whereby STING contributes to the pathogenesis of DR, diabetes was induced in STING-KO mice and STINGGT (loss-of-function mutation) mice, and molecular alterations and pathological changes in the retina were characterized. We report that retinal endothelial cell senescence, inflammation, and capillary degeneration were all inhibited in STING-KO diabetic mice; these observations were independently corroborated in STINGGT mice. These protective effects resulted from the reduction in TBK1, IRF3, and NF-κB phosphorylation in the absence of STING. Collectively, our results suggest that targeting STING may be an effective therapy for the early prevention and treatment of DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Camundongos , Retinopatia Diabética/genética , Células Endoteliais , Nucleotidiltransferases/genética , Inflamação , Senescência Celular , Cromogranina A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA