RESUMO
To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.
Assuntos
Íons/análise , Nicotiana/química , Nicotiana/fisiologia , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/fisiologia , Cromo/toxicidade , Secas , Genótipo , Íons/metabolismo , Mutação , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Nicotiana/efeitos dos fármacos , Nicotiana/genética , OligoelementosRESUMO
Aluminum is an element found in nature and in cosmetic products. It can interfere with the metabolism of other cations, thus inducing gastrointestinal disorder. In cosmetics, aluminum is used in antiperspirants, lipsticks, and toothpastes. The aim of this work is to investigate aluminum bioavailability after accidental oral ingestion derived from the use of a toothpaste containing a greater amount of aluminum hydroxide than advised by the Scientific Committee on Consumer Safety (SCCS). To simulate in vitro toothpaste accidental ingestion, the INFOGEST model was employed, and the amount of aluminum was measured through the ICP-AES analysis. Tissue barrier integrity was analyzed by measuring transepithelial electric resistance, and the tissue architecture was checked through light microscopy. The margin of safety was also calculated. Overall, our results indicate that the acute exposure to aluminum accidentally ingested from toothpastes is safe for the final user, even in amounts higher than SCCS indications.
Assuntos
Alumínio , Cosméticos , Disponibilidade Biológica , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade , Cremes DentaisRESUMO
In this work, a new sensitive procedure for the determination of ultratrace elements in snow samples based on quadrupole ICP-MS has been developed. After filtration through a 0.5 microm PTFE membrane (for dissolved element determination) or acidification with 0.5% nitric acid (for acid dissolvable element determination), the analytes were preconcentrated by sample volume reduction and analysed by ICP-MS. Micro-samples were efficiently introduced into the plasma source at 20 microl min(-1) uptake rate by using a PFA micronebulizer coupled to an evaporation chamber of the torch integrated sample introduction system (TISIS). As a result, the amount of sample required was about one order of magnitude lower than that required with a conventional liquid sample introduction system. In order to improve the transport efficiency, the TISIS chamber was electrically-heated at 70 degrees C and a sheathing gas stream was used to protect the aerosol from the chamber walls. Under these conditions, negative solvent plasma effects were no more severe than for conventional systems, because the total solvent plasma load was 20 mg min(-1). The operating parameters were optimized to obtain maximum sensitivity, while limiting oxides and double charge ion formation. The polyatomic interferences were removed by applying the dynamic reaction cell (DRC) technique, using ammonia as the reaction gas. Under the optimized conditions, limits of detection ranged from 0.02 to 4.5 pg g(-1), allowing the determination of Cr, V, Fe, Mn, Pb, Zn, Cd, Co and Cu in Antarctic snow samples. Signal repeatability was lower than 10% which prevented the use of an internal standard. Precision of the procedure ranged from 2.0% to 5.6%. The accuracy of the method was verified by the analysis of both certified reference water and surface snow samples collected in coastal and inland areas of Antarctica. The DRC program used, the short wash out and signal stabilization times registered under these conditions led to a 10 h(-1) sample throughput.
RESUMO
Antarctica offers a good opportunity to investigate planetary-scale pollution and climate change, and provides baseline values for contaminants such as Trace Elements (TEs) and Persistent Organic Pollutants (POPs). Literature data on contaminant levels in the Antarctic environment indicate that long-range atmospheric transport is the primary pathway by which pollutants from surrounding continents are carried to this pristine environment. However, local contamination sources represented by the scientific stations are also not negligible. Climate change and global warming are altering the global budget of anthropogenic contaminants and their monitoring in Antarctica ecosystems is very important to protect the global environment. In this work, eighty specimens of Adamussium colbecki (Smith, 1902), a benthic Antarctic scallop, collected from 1996 to 2009 and stored in the Antarctic Environmental Specimen Bank, were analyzed to quantify TEs and POPs, including polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and polycyclic aromatic hydrocarbons (PAHs). Metals concentrations were not affected by anthropogenic contributions, highlighting a natural accumulation with the age of the organism. Similarly, no temporal trend was found for PCNs, PCBs and PAHs. However, specimens collected during the summer 1997-98 showed enhanced concentration levels of PCBs and PAHs that could refer to a local anthropogenic source of contamination.
Assuntos
Monitoramento Ambiental/métodos , Naftalenos/análise , Pectinidae/química , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Animais , Regiões Antárticas , Baías , Mudança Climática , Ecossistema , Poluição Ambiental/análise , Metais/análise , Estudos Retrospectivos , Oligoelementos/análiseRESUMO
An experimental design procedure was applied to optimize the operating conditions of an axially-viewed inductively coupled plasma emission spectrometer instruments equipped with echelle optics with cross dispersion and charge transfer device. The multivariate effect of carrier gas flow rate and r.f. power on several analytical figures was investigated and discussed. Both ultrasonic and pneumatic nebulization were used. For the final choice of the optimum, different criteria were taken into account, mainly plasma robustness, instrumental precision, analyte and background net emission, detection limits and signal-to-background ratios. It was found that the use of moderate power (1100W) and mean carrier gas flow rate (0.75 L/min) allows to obtain sufficient plasma robustness, satisfactory precision, and excellent signal-to-background ratios and limits of detection, favorable for ultratrace element determinations in environmental matrices.
Assuntos
Água Doce/análise , Espectrofotometria Atômica/métodos , Modelos Lineares , Análise Multivariada , Padrões de Referência , Sensibilidade e Especificidade , Espectrofotometria Atômica/normasRESUMO
From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 µm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities.
Assuntos
Monitoramento Ambiental , Metais/análise , Metais/química , Neve/química , Regiões Antárticas , Estações do Ano , Oligoelementos/análise , Oligoelementos/químicaRESUMO
Trace level of selenium and mercury in photographic emulsion are used to improve photographic properties. The presence of silver halide in photographic emulsion does not allow the application of the most common analytical methods such as Hydride Generation Atomic Absorption Spectrometry (HG-AAS) and cold vapour Atomic Absorption Spectrometry (CV-AAS). Besides, silver removal was not quantitative, leading to a significant loss of the analytes and low reproducibility. The present work suggest the use of inductively coupled plasma Atomic Emission Spectrometry (ICP-AES) equipped with Ultrasonic Nebulizer (USN) for direct aqueous samples analysis at microgram l-1 level (d.l. 5.1 ppb for Hg and 6.1 ppb for Se).
Assuntos
Emulsões , Mercúrio/análise , Fotografação , Selênio/análise , Espectrofotometria AtômicaRESUMO
The bioavailability of trace elements in marine sediments from Kongsfjorden (Svalbard Islands, Norwegian Arctic) was assessed and discussed. Total concentrations of several elements were determined in two granulometric fractions and their bioavailability evaluated by both applying a sequential-selective extraction procedure and using a biomimetic approach based on proteolytic enzymes. Total concentration values and solid speciation patterns indicated overall that the anthropogenic impact of trace elements in the investigated area is negligible, although a minor enrichment with respect to crustal values was found for As, Cd, Cr, Ni, and V. Enrichment of trace elements in the <63-µm fraction compared to the coarser one was evident for As, Cd, Cr, and Ni. The evaluation of the bioavailable fractions showed that a large part of the total content of trace elements cannot enter the aquatic food chain and emphasised the risk of overestimating the environmental impact of heavy metals if the assessment is only based on total concentrations.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Regiões Árticas , Metais Pesados/análise , SvalbardRESUMO
Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS), ICP sector field mass spectrometry (ICP-SFMS) and ICP atomic emission spectrometry (ICP-AES) were compared with regard to the direct determination of rare earth elements (REEs) in geological samples. In order to reduce the polyatomic interferences occurring in ICP-QMS, the use of a cooled spray chamber was optimized, obtaining a significant decrease of the oxide ions formation (about 50%) and a consequent mitigation of the interfering effects. Precision and accuracy of the method were demonstrated by the analyses of sediment and soil certified reference materials. ICP-SFMS working in high-resolution mode also provided accurate results, with similar precision to ICP-QMS (RSD%: 3-8%) and comparable or better limits of detection. Quantification limits of the procedures were 18-52 ng g(-1) and 10-780 ng g(-1) for sector field- and quadrupole-ICP-MS, respectively. Accurate and precise determination of most REEs was also achieved by ICP-AES using both pneumatic and ultrasonic nebulization, after a careful selection of the emission lines and compensation for non-spectral interferences by internal standardization. The three techniques were finally applied to glaciomarine sediment samples collected in Antarctica, providing comparable analytical data on REE abundance and depth pattern.
RESUMO
Arsenic compounds were quantified in the certified reference material MURST-ISS-A2 (Antarctic krill) using HPLC/ICPMS. The data should prove useful for assessing the accuracy of arsenic speciation procedures.
Assuntos
Arsênio/análise , Arsênio/química , Monitoramento Ambiental/normas , Euphausiacea/química , Animais , Regiões Antárticas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Padrões de ReferênciaRESUMO
A new procedure for determining low levels of lead in bone tissues has been developed. After wet acid digestion in a pressurized microwave-heated system, the solution was analyzed by inductively coupled plasma multichannel-based emission spectrometry. Internal standardization using the Co 228.615 nm reference line was chosen as the optimal method to compensate for the matrix effects from the presence of calcium and nitric acid at high concentration levels. The detection limit of the procedure was 0.11 microg Pb g(-1) dry mass. Instrumental precision at the analytical concentration of approximately 10 microg l(-1) ranged from 6.1 to 9.4%. Precision of the sample preparation step was 5.4%. The concentration of lead in SRM 1486 (1.32+/-0.04 microg g(-1)) found using the new procedure was in excellent agreement with the certified level (1.335+/-0.014 microg g(-1)). Finally, the method was applied to determine the lead in various fish bone tissues, and the analytical results were found to be in good agreement with those obtained through differential pulse anodic stripping voltammetry. The method is therefore suitable for the reliable determination of lead at concentration levels of below 1 microg g(-1) in bone samples. Moreover, the multi-element capability of the technique allows us to simultaneously determine other major or trace elements in order to investigate inter-element correlation and to compute enrichment factors, making the proposed procedure particularly useful for investigating lead occurrence and pathways in fish bone tissues in order to find suitable biomarkers for the Antarctic marine environment.
Assuntos
Osso e Ossos/química , Chumbo/análise , Espectrofotometria Atômica/métodos , Animais , PeixesRESUMO
A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).