Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(13): e2117640119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320039

RESUMO

KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.


Assuntos
Canais de Potássio KCNQ , Canal de Potássio KCNQ3 , Animais , Encéfalo/metabolismo , Genótipo , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Processamento de Proteína
2.
J Neurosci ; 43(38): 6479-6494, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37607817

RESUMO

Gain-of-function (GOF) pathogenic variants in the potassium channels KCNQ2 and KCNQ3 lead to hyperexcitability disorders such as epilepsy and autism spectrum disorders. However, the underlying cellular mechanisms of how these variants impair forebrain function are unclear. Here, we show that the R201C variant in KCNQ2 has opposite effects on the excitability of two types of mouse pyramidal neurons of either sex, causing hyperexcitability in layer 2/3 (L2/3) pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. Similarly, the homologous R231C variant in KCNQ3 leads to hyperexcitability in L2/3 pyramidal neurons and hypoexcitability in CA1 pyramidal neurons. However, the effects of KCNQ3 gain-of-function on excitability are specific to superficial CA1 pyramidal neurons. These findings reveal a new level of complexity in the function of KCNQ2 and KCNQ3 channels in the forebrain and provide a framework for understanding the effects of gain-of-function variants and potassium channels in the brain.SIGNIFICANCE STATEMENT KCNQ2/3 gain-of-function (GOF) variants lead to severe forms of neurodevelopmental disorders, but the mechanisms by which these channels affect neuronal activity are poorly understood. In this study, using a series of transgenic mice we demonstrate that the same KCNQ2/3 GOF variants can lead to either hyperexcitability or hypoexcitability in different types of pyramidal neurons [CA1 vs layer (L)2/3]. Additionally, we show that expression of the recurrent KCNQ2 GOF variant R201C in forebrain pyramidal neurons could lead to seizures and SUDEP. Our data suggest that the effects of KCNQ2/3 GOF variants depend on specific cell types and brain regions, possibly accounting for the diverse range of phenotypes observed in individuals with KCNQ2/3 GOF variants.


Assuntos
Mutação com Ganho de Função , Canal de Potássio KCNQ2 , Canal de Potássio KCNQ3 , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Canal de Potássio KCNQ2/genética , Camundongos Transgênicos , Canais de Potássio , Prosencéfalo , Células Piramidais , Canal de Potássio KCNQ3/genética
3.
J Neurosci ; 37(3): 576-586, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100740

RESUMO

KCNQ2 potassium channels are critical for normal brain function, as both loss-of-function and gain-of-function KCNQ2 variants can lead to various forms of neonatal epilepsy. Despite recent progress, the full spectrum of consequences as a result of KCNQ2 dysfunction in neocortical pyramidal neurons is still unknown. Here, we report that conditional ablation of Kcnq2 from mouse neocortex leads to hyperexcitability of layer 2/3 (L2/3) pyramidal neurons, exhibiting an increased input resistance and action potential frequency, as well as a reduced medium afterhyperpolarization (mAHP), a conductance partly mediated by KCNQ2 channels. Importantly, we show that introducing the KCNQ2 loss-of-function variant KCNQ2I205V into L2/3 pyramidal neurons using in utero electroporation also results in a hyperexcitable phenotype similar to the conditional knock-out. KCNQ2I205V has a right-shifted conductance-to-voltage relationship, suggesting loss of KCNQ2 channel activity at subthreshold membrane potentials is sufficient to drive large changes in L2/3 pyramidal neuronal excitability even in the presence of an intact mAHP. We also found that the changes in excitability following Kcnq2 ablation are accompanied by alterations at action potential properties, including action potential amplitude in Kcnq2-null neurons. Importantly, partial inhibition of Nav1.6 channels was sufficient to counteract the hyperexcitability of Kcnq2-null neurons. Therefore, our work shows that loss of KCNQ2 channels alters the intrinsic neuronal excitability and action potential properties of L2/3 pyramidal neurons, and identifies Nav1.6 as a new potential molecular target to reduce excitability in patients with KCNQ2 encephalopathy. SIGNIFICANCE STATEMENT: KCNQ2 channels are critical for the development of normal brain function, as KCNQ2 variants could lead to epileptic encephalopathy. However, the role of KCNQ2 channels in regulating the properties of neocortical neurons is largely unexplored. Here, we find that Kcnq2 ablation or loss-of-function at subthreshold membrane potentials leads to increased neuronal excitability of neocortical layer 2/3 (L2/3) pyramidal neurons. We also demonstrate that Kcnq2 ablation unexpectedly leads to a larger action potential amplitude. Importantly, we propose the Nav1.6 channel as a new molecular target for patients with KCNQ2 encephalopathy, as partial inhibition of these channels counteracts the increased L2/3 pyramidal neuron hyperexcitability of Kcnq2-null neurons.


Assuntos
Epilepsia/fisiopatologia , Canal de Potássio KCNQ2/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Epilepsia/genética , Células HEK293 , Humanos , Canal de Potássio KCNQ2/deficiência , Canal de Potássio KCNQ2/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neocórtex/fisiologia
4.
Biophys J ; 110(5): 1089-98, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26958886

RESUMO

The slow afterhyperpolarization (sAHP) is a calcium-activated potassium conductance with critical roles in multiple physiological processes. Pharmacological and genetic data suggest that KCNQ channels partly mediate the sAHP. However, these channels are not typically open within the observed voltage range of the sAHP. Recent work has shown that the sAHP is gated by increased PIP2 levels, which are generated downstream of calcium binding by neuronal calcium sensors such as hippocalcin. Here, we examined whether changes in PIP2 levels could shift the voltage-activation range of KCNQ channels. In HEK293T cells, expression of the PIP5 kinase PIPKIγ90, which increases global PIP2 levels, shifted the KCNQ voltage activation to within the operating range of the sAHP. Further, the sensitivity of this effect on KCNQ3 channels appeared to be higher than that on KCNQ2. Therefore, we predict that KCNQ3 plays an essential role in maintaining the sAHP under low PIP2 conditions. In support of this notion, we find that sAHP inhibition by muscarinic receptors that increase phosphoinositide turnover in neurons is enhanced in Kcnq3-knockout mice. Likewise, the presence of KCNQ3 is essential for maintaining the sAHP when hippocalcin is ablated, a condition that likely impairs PIP2 generation. Together, our results establish the relationship between PIP2 and the voltage dependence of cortical KCNQ channels (KCNQ2/3, KCNQ3/5, and KCNQ5), and suggest a possible mechanism for the involvement of KCNQ channels in the sAHP.


Assuntos
Córtex Cerebral/metabolismo , Ativação do Canal Iônico , Canal de Potássio KCNQ3/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Carbamatos/farmacologia , Feminino , Células HEK293 , Hipocalcina/metabolismo , Humanos , Canal de Potássio KCNQ3/deficiência , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenilenodiaminas/farmacologia , Células Piramidais/metabolismo
5.
J Neurosci ; 35(23): 8829-42, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26063916

RESUMO

Voltage-gated Kv7 (KCNQ) channels are voltage-dependent potassium channels that are activated at resting membrane potentials and therefore provide a powerful brake on neuronal excitability. Genetic or experience-dependent reduction of KCNQ2/3 channel activity is linked with disorders that are characterized by neuronal hyperexcitability, such as epilepsy and tinnitus. Retigabine, a small molecule that activates KCNQ2-5 channels by shifting their voltage-dependent opening to more negative voltages, is an US Food and Drug Administration (FDA) approved anti-epileptic drug. However, recently identified side effects have limited its clinical use. As a result, the development of improved KCNQ2/3 channel activators is crucial for the treatment of hyperexcitability-related disorders. By incorporating a fluorine substituent in the 3-position of the tri-aminophenyl ring of retigabine, we synthesized a small-molecule activator (SF0034) with novel properties. Heterologous expression of KCNQ2/3 channels in HEK293T cells showed that SF0034 was five times more potent than retigabine at shifting the voltage dependence of KCNQ2/3 channels to more negative voltages. Moreover, unlike retigabine, SF0034 did not shift the voltage dependence of either KCNQ4 or KCNQ5 homomeric channels. Conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons showed that SF0034 requires the expression of KCNQ2/3 channels for reducing the excitability of CA1 hippocampal neurons. Behavioral studies demonstrated that SF0034 was a more potent and less toxic anticonvulsant than retigabine in rodents. Furthermore, SF0034 prevented the development of tinnitus in mice. We propose that SF0034 provides, not only a powerful tool for investigating ion channel properties, but, most importantly, it provides a clinical candidate for treating epilepsy and preventing tinnitus.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamatos/uso terapêutico , Epilepsia/tratamento farmacológico , Canal de Potássio KCNQ2/agonistas , Canal de Potássio KCNQ2/metabolismo , Fenilenodiaminas/uso terapêutico , Zumbido/prevenção & controle , Animais , Animais Recém-Nascidos , Anticonvulsivantes/química , Carbamatos/química , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/genética , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Técnicas In Vitro , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Mutação/genética , Fenilenodiaminas/química , Ratos , Ratos Sprague-Dawley , Zumbido/etiologia , Fatores de Transcrição/genética
6.
J Neurosci ; 34(15): 5311-21, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719109

RESUMO

KCNQ2 and KCNQ3 potassium channels have emerged as central regulators of pyramidal neuron excitability and spiking behavior. However, despite an abundance of evidence demonstrating that KCNQ2/3 heteromers underlie critical potassium conductances, it is unknown whether KCNQ2, KCNQ3, or both are obligatory for maintaining normal pyramidal neuron excitability. Here, we demonstrate that conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons in mice results in abnormal electrocorticogram activity and early death, whereas similar deletion of Kcnq3 does not. At the cellular level, Kcnq2-null, but not Kcnq3-null, CA1 pyramidal neurons show increased excitability manifested as a decreased medium afterhyperpolarization and a longer-lasting afterdepolarization. As a result, these Kcnq2-deficient neurons are hyperexcitable, responding to current injections with an increased number and frequency of action potentials. Biochemically, the Kcnq2 deficiency secondarily results in a substantial loss of KCNQ3 and KCNQ5 protein levels, whereas loss of Kcnq3 only leads to a modest reduction of other KCNQ channels. Consistent with this finding, KCNQ allosteric activators can still markedly dampen neuronal excitability in Kcnq3-null pyramidal neurons, but have only weak effects in Kcnq2-null pyramidal neurons. Together, our data reveal the indispensable function of KCNQ2 channels at both the cellular and systems levels, and demonstrate that pyramidal neurons have near normal excitability in the absence of KCNQ3 channels.


Assuntos
Potenciais de Ação , Epilepsia/genética , Deleção de Genes , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/fisiologia , Animais , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Células Piramidais/metabolismo
7.
bioRxiv ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38260608

RESUMO

KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.

8.
J Neurosci ; 32(33): 11435-40, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895725

RESUMO

The spatial distribution of ion channels is an important determinant of neuronal excitability. However, there are currently no quantitative techniques to map endogenous ion channels with single-channel resolution in living cells. Here, we demonstrate that integration of pharmacology with single-molecule atomic force microscopy (AFM) allows for the high-resolution mapping of native potassium channels in living neurons. We focus on calcium-activated small conductance (SK) potassium channels, which play a critical role in brain physiology. By linking apamin, a toxin that specifically binds to SK channels, to the tip of an AFM cantilever, we are able to detect binding events between the apamin and SK channels. We find that native SK channels from rat hippocampal neurons reside primarily in dendrites as single entities and in pairs. We also show that SK channel dendritic distribution is dynamic and under the control of protein kinase A. Our study demonstrates that integration of toxin pharmacology with single-molecule AFM can be used to quantitatively map individual native ion channels in living cells, and thus provides a new tool for the study of ion channels in cellular physiology.


Assuntos
Microscopia de Força Atômica , Neurônios/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Animais Recém-Nascidos , Apamina/farmacologia , Biofísica , Células Cultivadas , Colforsina/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Transfecção
9.
Exp Neurol ; 355: 114141, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691372

RESUMO

Anti-seizure drug (ASD) targets are widely expressed in both excitatory and inhibitory neurons. It remains unknown if the action of an ASD upon inhibitory neurons could counteract its beneficial effects on excitatory neurons (or vice versa), thereby reducing the efficacy of the ASD. Here, we examine whether the efficacy of the ASD retigabine (RTG) is altered after removal of the Kv7 potassium channel subunit KCNQ2, one of its drug targets, from parvalbumin-expressing interneurons (PV-INs). Parvalbumin-Cre (PV-Cre) mice were crossed with Kcnq2-floxed (Kcnq2fl/fl) mice to conditionally delete Kcnq2 from PV-INs. In these conditional knockout mice (cKO, PV-Kcnq2fl/fl), RTG (10 mg/kg, i.p.) significantly delayed the onset of either picrotoxin (PTX, 10 mg/kg, i.p)- or kainic acid (KA, 30 mg/kg, i.p.)-induced convulsive seizures compared to vehicle, while RTG was not effective in wild-type littermates (WT). Immunostaining for KCNQ2 and KCNQ3 revealed that both subunits were enriched at axon initial segments (AISs) of hippocampal CA1 PV-INs, and their specific expression was selectively abolished in cKO mice. Accordingly, the M-currents recorded from CA1 PV-INs and their sensitivity to RTG were significantly reduced in cKO mice. While the ability of RTG to suppress CA1 excitatory neurons in hippocampal slices was unchanged in cKO mice, its suppressive effect on the spike activity of CA1 PV-INs was significantly reduced compared with WT mice. In addition, the RTG-induced suppression on intrinsic membrane excitability of PV-INs in WT mice was significantly reduced in cKO mice. These findings suggest that preventing RTG from suppressing PV-INs improves its anticonvulsant effect.


Assuntos
Parvalbuminas , Fenilenodiaminas , Animais , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Interneurônios/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico
10.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33863780

RESUMO

Epileptic encephalopathies represent a group of disorders often characterized by refractory seizures, regression in cognitive development, and typically poor prognosis. Dysfunction of KCNQ2 and KCNQ3 channels has emerged as a major cause of neonatal epilepsy. However, our understanding of the cellular mechanisms that may both explain the origins of epilepsy and inform treatment strategies for KCNQ2 and KCNQ3 dysfunction is still lacking. Here, using mesoscale calcium imaging and pharmacology, we demonstrate that in mouse neonatal brain slices, conditional loss of Kcnq2 from forebrain excitatory neurons (Pyr:Kcnq2 mice) or constitutive deletion of Kcnq3 leads to sprawling hyperactivity across the neocortex. Surprisingly, the generation of time-varying hypersynchrony in slices from Pyr:Kcnq2 mice does not require fast synaptic transmission. This is in contrast to control littermates and constitutive Kcnq3 knock-out mice where activity is primarily driven by fast synaptic transmission in the neocortex. Unlike in the neocortex, hypersynchronous activity in the hippocampal formation from Kcnq2 conditional and Kcnq3 constitutive knock-out mice persists in the presence of synaptic transmission blockers. Thus, we propose that loss of KCNQ2 or KCNQ3 function differentially leads to network hyperactivity across the forebrain in a region-specific and macro-circuit-specific manner.


Assuntos
Epilepsia , Neocórtex , Animais , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Camundongos , Neocórtex/metabolismo , Neurônios/metabolismo
11.
Sci Rep ; 11(1): 3552, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574458

RESUMO

Oligodendrocyte precursor cells (NG2 glia) are uniformly distributed proliferative cells in the mammalian central nervous system and generate myelinating oligodendrocytes throughout life. A subpopulation of OPCs in the neocortex arises from progenitor cells in the embryonic ganglionic eminences that also produce inhibitory neurons. The neuronal fate of some progenitor cells is sealed before birth as they become committed to the oligodendrocyte lineage, marked by sustained expression of the oligodendrocyte transcription factor Olig2, which represses the interneuron transcription factor Dlx2. Here we show that misexpression of Dlx2 alone in postnatal mouse OPCs caused them to switch their fate to GABAergic neurons within 2 days by downregulating Olig2 and upregulating a network of inhibitory neuron transcripts. After two weeks, some OPC-derived neurons generated trains of action potentials and formed clusters of GABAergic synaptic proteins. Our study revealed that the developmental molecular logic can be applied to promote neuronal reprogramming from OPCs.


Assuntos
Desenvolvimento Embrionário/genética , Neurônios GABAérgicos/metabolismo , Proteínas de Homeodomínio/genética , Células Precursoras de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fatores de Transcrição/genética , Proliferação de Células/genética , Reprogramação Celular/genética , Sistema Nervoso Central , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Neuroglia/metabolismo , Sinapses/genética , Fatores de Transcrição/metabolismo
12.
Nat Commun ; 12(1): 4801, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376649

RESUMO

Hippocampal pyramidal cells encode an animal's location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5-10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.


Assuntos
Potenciais de Ação/fisiologia , Canal de Potássio KCNQ3/fisiologia , Células Piramidais/fisiologia , Ritmo Teta/fisiologia , Animais , Hipocampo/citologia , Humanos , Canal de Potássio KCNQ3/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Optogenética/métodos
13.
Mol Pharmacol ; 78(6): 1088-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20843955

RESUMO

Mutations in members of the KCNQ channel family underlie multiple diseases affecting the nervous and cardiovascular systems. Despite their clinical relevance, research into these channels is limited by the lack of subtype-selective inhibitors, making it difficult to differentiate the physiological function of each family member in vivo. We have proposed that KCNQ channels might partially underlie the calcium-activated slow afterhyperpolarization (sAHP), a neuronal conductance whose molecular components are uncertain. Here, we investigated whether 3-(triphenylmethylaminomethyl)pyridine (UCL2077), identified previously as an inhibitor of the sAHP in neurons, acts on members of the KCNQ family expressed in heterologous cells. We found that 3 µM UCL2077 strongly inhibits KCNQ1 and KCNQ2 channels and weakly blocks KCNQ4 channels in a voltage-independent manner. In contrast, UCL2077 potentiates KCNQ5 channels at more positive membrane potentials, with little effect at negative membrane potentials. We found that the effect of UCL2077 on KCNQ3 is bimodal: currents are enhanced at negative membrane potentials and inhibited at positive potentials. We found that UCL2077 facilitates KCNQ3 currents by inducing a leftward shift in the KCNQ3 voltage-dependence, a shift dependent on tryptophan 265. Finally, we show that UCL2077 has intermediate effects on KCNQ2/3 heteromeric channels compared with KCNQ2 and KCNQ3 homomers. Together, our data demonstrate that UCL2077 acts on KCNQ channels in a subtype-selective manner. This feature should make UCL2077 a useful tool for distinguishing KCNQ1 and KCNQ2 from less-sensitive KCNQ family members in neurons and cardiac cells in future studies.


Assuntos
Benzilaminas/farmacologia , Epilepsia/metabolismo , Canais de Potássio KCNQ/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Piridinas/farmacologia , Animais , Benzilaminas/classificação , Benzilaminas/metabolismo , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Canais de Potássio KCNQ/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Bloqueadores dos Canais de Potássio/classificação , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Piridinas/classificação , Piridinas/metabolismo
14.
Nature ; 424(6944): 81-4, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12819662

RESUMO

The many types of insect ear share a common sensory element, the chordotonal organ, in which sound-induced antennal or tympanal vibrations are transmitted to ciliated sensory neurons and transduced to receptor potentials. However, the molecular identity of the transducing ion channels in chordotonal neurons, or in any auditory system, is still unknown. Drosophila that are mutant for NOMPC, a transient receptor potential (TRP) superfamily ion channel, lack receptor potentials and currents in tactile bristles but retain most of the antennal sound-evoked response, suggesting that a different channel is the primary transducer in chordotonal organs. Here we describe the Drosophila Nanchung (Nan) protein, an ion channel subunit similar to vanilloid-receptor-related (TRPV) channels of the TRP superfamily. Nan mediates hypo-osmotically activated calcium influx and cation currents in cultured cells. It is expressed in vivo exclusively in chordotonal neurons and is localized to their sensory cilia. Antennal sound-evoked potentials are completely absent in mutants lacking Nan, showing that it is an essential component of the chordotonal mechanotransducer.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Audição/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Cricetinae , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Evolução Molecular , Deleção de Genes , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Neurônios/metabolismo , Pressão Osmótica , Técnicas de Patch-Clamp , Canais de Potencial de Receptor Transitório
15.
Elife ; 92020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185190

RESUMO

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14's neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14's importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


Assuntos
Aciltransferases/metabolismo , Axônios/enzimologia , Superfamília Shaker de Canais de Potássio/metabolismo , Aciltransferases/genética , Animais , Fenômenos Eletrofisiológicos , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos , Ligação Proteica , Superfamília Shaker de Canais de Potássio/genética , Técnicas do Sistema de Duplo-Híbrido
16.
Genes Brain Behav ; 19(1): e12599, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283873

RESUMO

KCNQ/Kv 7 channels conduct voltage-dependent outward potassium currents that potently decrease neuronal excitability. Heterozygous inherited mutations in their principle subunits Kv 7.2/KCNQ2 and Kv 7.3/KCNQ3 cause benign familial neonatal epilepsy whereas patients with de novo heterozygous Kv 7.2 mutations are associated with early-onset epileptic encephalopathy and neurodevelopmental disorders characterized by intellectual disability, developmental delay and autism. However, the role of Kv 7.2-containing Kv 7 channels in behaviors especially autism-associated behaviors has not been described. Because pathogenic Kv 7.2 mutations in patients are typically heterozygous loss-of-function mutations, we investigated the contributions of Kv 7.2 to exploratory, social, repetitive and compulsive-like behaviors by behavioral phenotyping of both male and female KCNQ2+/- mice that were heterozygous null for the KCNQ2 gene. Compared with their wild-type littermates, male and female KCNQ2+/- mice displayed increased locomotor activity in their home cage during the light phase but not the dark phase and showed no difference in motor coordination, suggesting hyperactivity during the inactive light phase. In the dark phase, KCNQ2+/- group showed enhanced exploratory behaviors, and repetitive grooming but decreased sociability with sex differences in the degree of these behaviors. While male KCNQ2+/- mice displayed enhanced compulsive-like behavior and social dominance, female KCNQ2+/- mice did not. In addition to elevated seizure susceptibility, our findings together indicate that heterozygous loss of Kv 7.2 induces behavioral abnormalities including autism-associated behaviors such as reduced sociability and enhanced repetitive behaviors. Therefore, our study is the first to provide a tangible link between loss-of-function Kv 7.2 mutations and the behavioral comorbidities of Kv 7.2-associated epilepsy.


Assuntos
Comportamento Exploratório , Asseio Animal , Canal de Potássio KCNQ2/genética , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Comportamento Social , Animais , Feminino , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Estereotipado
17.
Elife ; 72018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382937

RESUMO

KCNQ2/3 channels, ubiquitously expressed neuronal potassium channels, have emerged as indispensable regulators of brain network activity. Despite their critical role in brain homeostasis, the mechanisms by which KCNQ2/3 dysfunction lead to hypersychrony are not fully known. Here, we show that deletion of KCNQ2/3 channels changed PV+ interneurons', but not SST+ interneurons', firing properties. We also find that deletion of either KCNQ2/3 or KCNQ2 channels from PV+ interneurons led to elevated homeostatic potentiation of fast excitatory transmission in pyramidal neurons. Pvalb-Kcnq2 null-mice showed increased seizure susceptibility, suggesting that decreases in interneuron KCNQ2/3 activity remodels excitatory networks, providing a new function for these channels.


Assuntos
Deleção de Genes , Homeostase , Interneurônios/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Transmissão Sináptica , Animais , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Transmissão Sináptica/efeitos dos fármacos
18.
Neurosci Lett ; 349(1): 53-7, 2003 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-12946585

RESUMO

The electrical properties of neurons are produced by the coordinated activity of ion channels. K+ channels play a key role in shaping action potentials and in determining neural firing patterns. Small conductance Ca2+-activated K+ (SK(Ca)) channels are involved in modulating the slow component of afterhyperpolarization (AHP). Here we examine whether rat type 2 SK(Ca) (rSK2) channels can affect the shape of the action potential and the neural firing pattern, by overexpressing rat SK2 channels in Aplysia neuron R15. Our results show that rSK2 overexpression decreased the intra-burst frequency and changed the regular bursting activity of neurons to an irregular bursting or beating pattern in R15. Furthermore, the overexpression of rSK2 channels increased AHP and reduced the duration of the action potential. Thus, our results suggest that ectopic SK(Ca) channels play an important role in regulating the firing pattern and the shape of the action potential.


Assuntos
Potenciais de Ação/genética , Aplysia/fisiologia , Sistema Nervoso Central/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Periodicidade , Canais de Potássio Cálcio-Ativados , Canais de Potássio/genética , Animais , Expressão Gênica/genética , Técnicas de Transferência de Genes , Proteínas Recombinantes de Fusão , Canais de Potássio Ativados por Cálcio de Condutância Baixa
20.
J Biol Chem ; 283(22): 15072-7, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18364354

RESUMO

Kv4 potassium channels produce rapidly inactivating currents that regulate excitability of muscles and nerves. To reconstitute the neuronal A-type current I(SA), Kv4 subunits assemble with DPP6, a single transmembrane domain accessory subunit. DPP6 alters function-accelerating activation, inactivation, and recovery from inactivation-and increases surface expression. We sought here to determine the stoichiometry of Kv4 and DPP6 in complexes using functional and biochemical methods. First, wild type channels formed from subunit monomers were compared with channels carrying subunits linked in tandem to enforce 4:4 and 4:2 assemblies (Kv4.2-DPP6 and Kv4.2-Kv4.2-DPP6). Next, channels were overexpressed and purified so that the molar ratio of subunits in complexes could be assessed by direct amino acid analysis. Both biophysical and biochemical methods indicate that I(SA) channels carry four subunits each of Kv4.2 and DPP6.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases , Humanos , Complexos Multiproteicos/genética , Músculos/metabolismo , Proteínas do Tecido Nervoso/genética , Peptídeo Hidrolases/genética , Canais de Potássio/genética , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Canais de Potássio Shal/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA