Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Biol Toxicol ; 39(1): 183-199, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34523043

RESUMO

The autophagy-mediated lysosomal pathway plays an important role in conferring stress tolerance to tumor cells during cellular stress such as increased metabolic demands. Thus, targeted disruption of this function and inducing lysosomal cell death have been proved to be a useful cancer therapeutic approach. In this study, we reported that octyl syringate (OS), a novel phenolic derivate, was preferentially cytotoxic to various cancer cells but was significantly less cytotoxic to non-transformed cells. Treatment with OS resulted in non-apoptotic cell death in a caspase-independent manner. Notably, OS not only enhanced accumulation of autophagic substrates, including lapidated LC3 and sequestosome-1, but also inhibited their degradation via an autophagic flux. In addition, OS destabilized the lysosomal function, followed by the intracellular accumulation of the non-digestive autophagic substrates such as bovine serum albumin and stress granules. Furthermore, OS triggered the release of lysosomal enzymes into the cytoplasm that contributed to OS-induced non-apoptotic cell death. Finally, we demonstrated that OS was well tolerated and reduced tumor growth in mouse xenograft models. Taken together, our study identifies OS as a novel anticancer agent that induces lysosomal destabilization and subsequently inhibits autophagic flux and further supports development of OS as a lysosome-targeting compound in cancer therapy. • Octyl syringate, a phenolic derivate, is preferentially cytotoxic to various cancer cells. • Octyl syringate destabilizes the lysosomal function. • Octyl syringate blocks the autophagic flux. • Octyl syringate is a potential candidate compound for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Humanos , Apoptose , Antineoplásicos/farmacologia , Morte Celular , Autofagia , Lisossomos/metabolismo , Neoplasias/metabolismo
2.
Cell Biol Toxicol ; 39(4): 1677-1696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36163569

RESUMO

The activation of receptor-interacting protein kinase 1 (RIPK1) by death-inducing signaling complex (DISC) formation is essential for triggering the necroptotic mode of cell death under apoptosis-deficient conditions. Thus, targeting the induction of necroptosis by modulating RIPK1 activity could be an effective strategy to bypass apoptosis resistance in certain types of cancer. In this study, we screened a series of arborinane triterpenoids purified from Rubia philippinesis and identified rubiarbonol B (Ru-B) as a potent caspase-8 activator that induces DISC-mediated apoptosis in multiple types of cancer cells. However, in RIPK3-expressing human colorectal cancer (CRC) cells, the pharmacological or genetic inhibition of caspase-8 shifted the mode of cell death by Ru-B from apoptosis to necroptosis though upregulation of RIPK1 phosphorylation. Conversely, Ru-B-induced cell death was almost completely abrogated by RIPK1 deficiency. The enhanced RIPK1 phosphorylation and necroptosis triggered by Ru-B treatment occurred independently of tumor necrosis factor receptor signaling and was mediated by the production of reactive oxygen species via NADPH oxidase 1 in CRC cells. Thus, we propose Ru-B as a novel anticancer agent that activates RIPK1-dependent cell death via ROS production, and suggest its potential as a novel necroptosis-targeting compound in apoptosis-resistant CRC.


Assuntos
Apoptose , Necroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Caspase 8/metabolismo , Caspase 8/farmacologia , Morte Celular , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/farmacologia
3.
FASEB J ; 34(3): 4369-4383, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027418

RESUMO

In tumor necrosis factor (TNF) signaling, phosphorylation and activation of receptor interacting protein kinase 1 (RIPK1) by upstream kinases is an essential checkpoint in the suppression of TNF-induced cell death. Thus, discovery of pharmacological agents targeting RIPK1 may provide new strategies for improving the therapeutic efficacy of TNF. In this study, we found that 3-O-acetylrubianol C (3AR-C), an arborinane triterpenoid isolated from Rubia philippinesis, promoted TNF-induced apoptotic and necroptotic cell death. To identify the molecular mechanism, we found that in mouse embryonic fibroblasts, 3AR-C drastically upregulated RIPK1 kinase activity by selectively inhibiting IKKß. Notably, 3AR-C did not interfere with IKKα or affect the formation of the TNF receptor1 (TNFR1) complex-I. Moreover, in human cancer cells, 3AR-C was only sufficient to sensitize TNF-induced cell death when c-FLIPL expression was downregulated to facilitate the formation of TNFR1 complex-II and necrosome. Taken together, our study identified a novel arborinane triterpenoid 3AR-C as a potent activator of TNF-induced cell death via inhibition of IKKß phosphorylation and promotion of the cytotoxic potential of RIPK1, thus providing a rationale for further development of 3AR-C as a selective IKKß inhibitor to overcome TNF resistance in cancer therpay.


Assuntos
Apoptose/fisiologia , Quinase I-kappa B/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Humanos , Quinase I-kappa B/genética , Espectroscopia de Ressonância Magnética , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Biochem Biophys Res Commun ; 490(3): 901-905, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28648603

RESUMO

Eccrine sweat glands regulate body temperature by secreting water and electrolytes. In humans, eccrine sweat glands are ubiquitous in the skin, except in the lips and external genitalia. In mice, eccrine sweat glands are present only in the paw pad. Brn2 is a protein belonging to a large family of transcription factors. A few studies have examined Brn2 in melanoma cells and epidermal keratinocytes. This study investigated changes in the skin in the K5-Brn2 transgenic mouse, which overexpresses Brn2 and contains the keratin 5 promotor. Interestingly, the volume of eccrine sweat glands was reduced markedly in the K5-Brn2 transgenic mouse compared with the wild-type, while the expression of aquaporin 5, important molecule in sweat secretion, was increased in each sweat gland cell, probably to compensate for the reduction in gland development. However, sweating response to a pilocarpine injection in the hind paw was significantly decreased in the K5-Brn2 transgenic mouse compared with the wild-type. The paw epidermis was thicker in the K5-Brn2 transgenic mouse compared with the wild-type. Taken together, eccrine sweat gland development and sweat secretion were suppressed markedly in the K5-Brn2 transgenic mouse. These results may be associated with dominant development of the epidermis by Brn2 overexpression in the paw skin.


Assuntos
Glândulas Écrinas/crescimento & desenvolvimento , Epiderme/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Fatores do Domínio POU/genética , Regulação para Cima , Animais , Glândulas Écrinas/fisiologia , Epiderme/fisiologia , Humanos , Queratina-5/genética , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Regiões Promotoras Genéticas , Sudorese
5.
Biochem Biophys Res Commun ; 459(4): 673-8, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25767074

RESUMO

Psoriasis is a common skin disease, of which pathogenesis involves the increase of inflammatory reaction in epidermal cells. In an attempt to find therapeutics for psoriasis, we found that cucurbitacin B has an inhibitory potential on imiquimod-induced inflammation of keratinocytes. Cucurbitacin B significantly inhibited imiquimod-induced expression of crucial psoriatic cytokines, such as IL-8 and CCL20, via down-regulation of NF-κB and STAT3 signaling pathway in human keratinocytes. In addition, keratinocyte proliferation was markedly inhibited by cucurbitacin B. The potential beneficial effect of cucurbitacin B on psoriasis was further validated in imiquimod-induced psoriasiform dermatitis of experimental animal. Topical application of cucurbitacin B resulted in significant reduction of epidermal hyperplasia and inflammatory cytokines production, and ameliorated the psoriatic symptom. Taken together, these results suggest that cucurbitacin B may be a potential candidate for the treatment of psoriasis.


Assuntos
Aminoquinolinas/farmacologia , Dermatite/tratamento farmacológico , Triterpenos/farmacologia , Sequência de Bases , Primers do DNA , Humanos , Imiquimode , Técnicas In Vitro , Reação em Cadeia da Polimerase em Tempo Real
6.
Biochem Biophys Res Commun ; 444(1): 81-5, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24434151

RESUMO

Inhibitor of DNA binding 1 (Id1) is a basic helix-loop-helix (bHLH) protein that has a variety of functional roles in cellular events including differentiation, cell cycle and cancer development. In addition, it has been demonstrated that Id1 is related with TGF-ß and Smad signaling in various biological conditions. In this study, we investigated the effect of Id1 on TGF-ß-induced collagen expression in human dermal fibroblasts. When Id1-b isoform was overexpressed, TGF-ß-induced collagen expression was markedly inhibited. Consistent with this result, Id1-b significantly inhibited TGF-ß-induced collagen gel contraction. In addition, Id1-b inhibited TGF-ß-induced phosphorylation of Smad2 and Smad3. Finally, immunohistochemistry showed that Id1 expression was decreased in fibrotic skin diseases while TGF-ß signaling was increased. Together, these results suggest that Id1 is an inhibitory regulator on TGF-ß-induced collagen expression in dermal fibroblasts.


Assuntos
Colágeno Tipo I/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Regulação para Baixo , Fibroblastos/metabolismo , Fibrose , Humanos , Proteína 1 Inibidora de Diferenciação/genética , Transdução de Sinais , Pele/citologia , Dermatopatias/genética , Dermatopatias/metabolismo , Dermatopatias/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
7.
Biochem Biophys Res Commun ; 450(2): 1115-9, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24996181

RESUMO

Genkwadaphnin is a daphnane diterpene ester molecule isolated from the flower buds of Daphne genkwa. In the present study, we investigated the apoptosis-inducing effect of genkwadaphnin in squamous cell carcinoma (SCC) cells. Apoptosis was triggered in SCC12 cells following genkwadaphnin treatment in a time- and concentration-dependent manner. Genkwadaphnin treatment increased phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Knockdown of JNK and p38 MAPK by recombinant adenovirus expressing microRNA (miR) resulted in significant inhibition of genkwadaphnin-induced apoptosis in SCC12 cells. Finally, pretreatment with the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) markedly reduced SCC12 cell apoptosis, concomitant with significant inhibition of MAPK activation. These results indicate that genkwadaphnin has the potential to induce apoptosis in SCC cells, providing information on which to base further research with the aim of developing a cure for SCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Diterpenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosforilação , Neoplasias Cutâneas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Exp Dermatol ; 23(1): 70-2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24289322

RESUMO

Androgens are important hormones that influence sebum production from the sebaceous glands. Human facial skin can be categorized as T- and U-zones, which are areas with high and low levels of sebum secretion, respectively. This study was performed to investigate whether there are topographical differences in androgen receptor (AR) expression related to regional variations in facial sebum secretion. The results of in vivo analysis indicated a statistically significant increase in AR expression in the sebaceous gland T-zones compared with the U-zones. In vitro experiments using human primary sebocytes also yielded similar results, with higher levels of AR protein and mRNA expression in T-zones. The results of this study suggested that differences in androgen susceptibility may be an important factor influencing regional differences in sebum production in human facial skin.


Assuntos
Androgênios/metabolismo , Sebo/metabolismo , Pele/metabolismo , Idoso , Face , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Glândulas Sebáceas/citologia , Glândulas Sebáceas/metabolismo , Pele/anatomia & histologia , Distribuição Tecidual
9.
Mol Cell Biochem ; 390(1-2): 289-95, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24515279

RESUMO

In this study, we investigated the role of glucocorticoid receptor (GR) in epidermal keratinocytes. In adult normal human skin, GR was highly expressed in the upper layers of the epidermis. Consistent with normal skin, GR expression was increased after calcium treatment of HaCaT keratinocytes cultured in vitro, suggesting that GR is involved in keratinocyte differentiation process. Overexpression of GR using an adenovirus showed that expression of involucrin, an early differentiation marker of keratinocytes, was markedly increased due to GR overexpression. However, treatment with dexamethasone, a GR agonist, did not increase involucrin expression. Overexpression of GR led to phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinases (ERK) in the absence of glucocorticoid, suggesting that the GR effect on involucrin expression is related to activation of intracellular signaling cascades. This idea was supported by the fact that GR-mediated involucrin induction was abolished after treatment with JNK and ERK inhibitors. In addition, GR mutants lacking the ligand-binding domain increased involucrin expression concomitantly with increase of ERK phosphorylation. Together, these results suggest that GR modulates involucrin expression of keratinocytes by regulating the intracellular signaling network in a ligand-independent manner.


Assuntos
Diferenciação Celular/genética , Precursores de Proteínas/biossíntese , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Regulação da Expressão Gênica , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Queratinócitos/metabolismo , Fosforilação , Transdução de Sinais/genética
10.
Mol Ther Methods Clin Dev ; 32(1): 101202, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38374964

RESUMO

The transgene toggling device is recognized as a powerful tool for gene- and cell-based biological research and precision medicine. However, many of these devices often operate in binary mode, exhibit unacceptable leakiness, suffer from transgene silencing, show cytotoxicity, and have low potency. Here, we present a novel transgene switch, SIQ, wherein all the elements for gene toggling are packed into a single vector. SIQ has superior potency in inducing transgene expression in response to tebufenozide compared with the Gal4/UAS system, while completely avoiding transgene leakiness. Additionally, the ease and versatility of SIQ make it possible with a single construct to perform transient transfection, establish stable cell lines by targeting a predetermined genomic locus, and simultaneously produce adenovirus for transduction into cells and mammalian tissues. Furthermore, we integrated a cumate switch into SIQ, called SIQmate, to operate a Boolean AND logic gate, enabling swift toggling-off of the transgene after the removal of chemical inducers, tebufenozide and cumate. Both SIQ and SIQmate offer precise transgene toggling, making them adjustable for various researches, including synthetic biology, genome engineering, and therapeutics.

11.
Heliyon ; 10(6): e28092, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533031

RESUMO

Ubiquitination of RIPK1 plays an essential role in the recruitment of the IKK complex, an upstream component of pro-survival NF-κB. It also limits TNF-induced programmed cell death by inhibiting the spatial transition from TNFR1-associated complex-I to RIPK1-dependent death-inducing complex-II or necrosome. Thus, the targeted disruption of RIPK1 ubiquitination, which induces RIPK1-dependent cell death, has proven to be a useful strategy for improving the therapeutic efficacy of TNF. In this study, we found that eupatolide, isolated from Liriodendron tulipifera, is a potent activator of the cytotoxic potential of RIPK1 by disrupting the ubiquitination of RIPK1 upon TNFR1 ligation. Analysis of events upstream of NF-κB signaling revealed that eupatolide inhibited IKKß-mediated NF-κB activation while having no effect on IKKα-mediated non-canonical NF-κB activation. Pretreatment with eupatolide drastically interfered with RIPK1 recruitment to the TNFR1 complex-I by disrupting RIPK1 ubiquitination. Moreover, eupatolide was sufficient to upregulate the activation of RIPK1, facilitating the TNF-mediated dual modes of apoptosis and necroptosis. Thus, we propose a novel mechanism by which eupatolide activates the cytotoxic potential of RIPK1 at the TNFR1 level and provides a promising anti-cancer therapeutic approach to overcome TNF resistance.

12.
J Biol Chem ; 287(31): 25954-63, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22692211

RESUMO

The biochemical mechanism by which the human tumorous imaginal disc1(S) (hTid-1(S)) interferes with actin cytoskeleton organization in keratinocytes of human skin epidermis was investigated. We found that hTid-1, specifically hTid-1(S), interacts with MK5, a p38-regulated/activated protein kinase, and inhibits the protein kinase activity of MK5 that phosphorylates heat shock protein HSP27 in cultured HeLa cells. Thus, hTid-1(S) expression inhibits the phosphorylation of HSP27 known to play important roles in F-actin polymerization and actin cytoskeleton organization. The interplay between MK5/HSP27 signaling and hTid-1(S) expression was supported by the inhibition of HSP27 phosphorylation and MK5 activity in HeLa cells in response to hypoxia during which hTid-1(S) expression was down-regulated. We also found that overexpression of hTid-1(S) results in the inhibition of HSP27 phosphorylation, F-actin polymerization, and actin cytoskeleton organization in transduced HaCaT keratinocytes. This study further proposes that the loss of hTid-1(S) expression in the basal layer of skin epidermis correlates with the enhanced HSP27 phosphorylation, keratinocyte hyperproliferation, and excess actin cytoskeleton organization in lesional psoriatic skin.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Psoríase/metabolismo , Actinas/metabolismo , Estudos de Casos e Controles , Hipóxia Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP40/genética , Células HeLa , Proteínas de Choque Térmico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Chaperonas Moleculares , Fosforilação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Psoríase/patologia , Transdução de Sinais , Pele/metabolismo , Pele/patologia
13.
J Am Acad Dermatol ; 69(5): 742-747, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23932647

RESUMO

BACKGROUND: Alopecia areata (AA), a chronic, relapsing hair-loss disorder, is considered to be a T-cell-mediated autoimmune disease. High-mobility group box 1 (HMGB1), released by necrotic cells and in response to various inflammatory stimuli, is currently considered to be a significant target antigen in diverse autoimmune diseases. OBJECTIVE: We sought to investigate the clinical significance of serum HMGB1 levels in AA. METHODS: We compared levels of HMGB1 in scalp specimens from 7 patients with AA and 8 healthy control subjects and in blood samples from 45 patients with AA and 10 healthy control subjects. Moreover, we evaluated the correlation between HMGB1 level and clinical severity. RESULTS: Immunohistochemical staining of scalp tissues from patients with AA revealed higher HMGB1 levels than in healthy control subjects. In addition, serum HMGB1 levels in the AA group were generally higher, and showed concordance with the patients' clinical characteristics, including onset, hair-pull test results, and treatment response. LIMITATIONS: The number of patients and healthy control subjects evaluated was small. CONCLUSION: These results suggest that HMGB1 plays a significant role in the pathogenesis of AA, and that it is a promising predictor of prognosis and treatment response. Moreover, this study identifies a new potential therapeutic target for the treatment of AA.


Assuntos
Alopecia em Áreas/sangue , Proteína HMGB1/sangue , Adulto , Feminino , Humanos , Masculino
14.
Carcinogenesis ; 33(10): 1882-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22696597

RESUMO

N-myc downstream-regulated gene 2 (NDRG2) has been studied for its inhibitory effects against growth and metastasis of many tumor cell types. In this study, we showed NDRG2 expression was correlated with favorable recurrence-free survival of patients with breast cancer and inhibited metastasis of breast cancer cells (4T1). NDRG2 expression was examined in 189 breast carcinoma tissues and paired normal breast tissues using immunohistochemistry. Histological and clinicopathological data were correlated using Pearson's chi-square test of independence. NDRG2 expression in human breast cancer tissues was inversely associated with lymph node metastasis and pTNM stage. Furthermore, patients with breast cancer with a high level of NDRG2 expression showed favorable recurrence-free survival (P = 0.038). To study the effect of NDRG2 on metastasis in vivo, we established an NDRG2-overexpressing mouse breast cancer cell line (4T1-NDRG2) and measured the metastasis and survival of 4T1-NDRG2 tumor-bearing mice. To test whether transforming growth factor ß (TGF-ß)- mediated metastasis of 4T1 was inhibited by NDRG2 expression, TGF-Smad-binding element (SBE)-luciferase activity and/or measurement of active TGF-ß were performed in cell or tumor tissue level. 4T1-NDRG2 cells grew gradually and showed less metastatic activity in vivo and low invasiveness in vitro. 4T1-NDRG2 cells showed lower SBE-luciferase activity and lower level of active autocrine TGF-ß than 4T1-Mock did. Correctly, our data show that NDRG2 significantly suppress tumor metastasis by attenuating active autocrine TGF-ß production, and the attenuation might be typically associated with the favorable recurrence-free survival of patients clinically.


Assuntos
Intervalo Livre de Doença , Proteínas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Metástase Linfática , Camundongos , Invasividade Neoplásica , Metástase Neoplásica/genética , Recidiva
15.
Biochem Biophys Res Commun ; 423(4): 647-53, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22683330

RESUMO

S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Derme/imunologia , Epiderme/imunologia , Queratinócitos/imunologia , Psoríase/imunologia , Calgranulina A/genética , Calgranulina B/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Citocinas/biossíntese , Derme/patologia , Células Endoteliais/patologia , Epiderme/patologia , Células HEK293 , Humanos , Células Jurkat , Neovascularização Fisiológica , Multimerização Proteica , Psoríase/patologia
16.
Dermatol Surg ; 38(7 Pt 1): 1040-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22455565

RESUMO

BACKGROUND: Recently, autologous platelet-rich plasma (PRP) has attracted attention in various medical fields, including plastic and orthopedic surgery and dermatology, for its ability to promote wound healing. PRP has been tested during facelift and hair transplantation to reduce swelling and pain and to increase hair density. OBJECTIVE: To investigate the effects of PRP on hair growth using in vivo and in vitro models. METHODS: PRP was prepared using the double-spin method and applied to dermal papilla (DP) cells. The proliferative effect of activated PRP on DP cells was measured. To understand the mechanisms of activated PRP on hair growth, we evaluated signaling pathways. In an in vivo study, mice received subcutaneous injections of activated PRP, and their results were compared with control mice. RESULTS: Activated PRP increased the proliferation of DP cells and stimulated extracellular signal-regulated kinase (ERK) and Akt signaling. Fibroblast growth factor 7 (FGF-7) and beta-catenin, which are potent stimuli for hair growth, were upregulated in DP cells. The injection of mice with activated PRP induced faster telogen-to-anagen transition than was seen on control mice. CONCLUSIONS: Although few studies tested the effects of activated PRP on hair growth, this research provides support for possible clinical application of autologous PRP and its secretory factors for promotion of hair growth.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Cabelo/crescimento & desenvolvimento , Plasma Rico em Plaquetas , Pele/citologia , Animais , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator 7 de Crescimento de Fibroblastos/metabolismo , Cabelo/metabolismo , Folículo Piloso/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Pele/metabolismo , Regulação para Cima , beta Catenina/metabolismo
17.
Autophagy ; 18(12): 2926-2945, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35316156

RESUMO

The N-degron pathway is a proteolytic system in which the N-terminal degrons (N-degrons) of proteins, such as arginine (Nt-Arg), induce the degradation of proteins and subcellular organelles via the ubiquitin-proteasome system (UPS) or macroautophagy/autophagy-lysosome system (hereafter autophagy). Here, we developed the chemical mimics of the N-degron Nt-Arg as a pharmaceutical means to induce targeted degradation of intracellular bacteria via autophagy, such as Salmonella enterica serovar Typhimurium (S. Typhimurium), Escherichia coli, and Streptococcus pyogenes as well as Mycobacterium tuberculosis (Mtb). Upon binding the ZZ domain of the autophagic cargo receptor SQSTM1/p62 (sequestosome 1), these chemicals induced the biogenesis and recruitment of autophagic membranes to intracellular bacteria via SQSTM1, leading to lysosomal degradation. The antimicrobial efficacy was independent of rapamycin-modulated core autophagic pathways and synergistic with the reduced production of inflammatory cytokines. In mice, these drugs exhibited antimicrobial efficacy for S. Typhimurium, Bacillus Calmette-Guérin (BCG), and Mtb as well as multidrug-resistant Mtb and inhibited the production of inflammatory cytokines. This dual mode of action in xenophagy and inflammation significantly protected mice from inflammatory lesions in the lungs and other tissues caused by all the tested bacterial strains. Our results suggest that the N-degron pathway provides a therapeutic target in host-directed therapeutics for a broad range of drug-resistant intracellular pathogens.Abbreviations: ATG: autophagy-related gene; BCG: Bacillus Calmette-Guérin; BMDMs: bone marrow-derived macrophages; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CFUs: colony-forming units; CXCL: C-X-C motif chemokine ligand; EGFP: enhanced green fluorescent protein; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; LIR: MAP1LC3/LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; Mtb: Mycobacterium tuberculosis; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PB1: Phox and Bem1; SQSTM1/p62: sequestosome 1; S. Typhimurium: Salmonella enterica serovar Typhimurium; TAX1BP1: Tax1 binding protein 1; TNF: tumor necrosis factor; UBA: ubiquitin-associated.


Assuntos
Autofagia , Macroautofagia , Animais , Camundongos , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Vacina BCG , Ubiquitina/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Salmonella typhimurium/metabolismo , Citocinas/metabolismo , Sirolimo/farmacologia
18.
Exp Cell Res ; 316(19): 3263-71, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20875405

RESUMO

Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.


Assuntos
Células Epidérmicas , Proteínas de Homeodomínio/metabolismo , Queratinócitos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Humanos , Queratinócitos/citologia , Peixe-Zebra/embriologia , Proteína Homeobox PITX2
19.
Biochem Pharmacol ; 192: 114733, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411570

RESUMO

In tumor necrosis factor (TNF) signaling, IκB kinase (IKK) complex-mediated activation of NF-κB is a well-known protective mechanism against cell death via transcriptional induction of pro-survival genes occurring as a late checkpoint. However, recent belief holds that IKK functions as an early cell death checkpoint to suppress the death-inducing signaling complex by regulating receptor interacting protein kinase1 (RIPK1) phosphorylation. In this study, we propose that two major gernaylated 7-hydroxy coumarins, 6-geranyl-7-hydroxycoumarin (ostruthin) and 8-geranyl-7-hydroxycoumarin (8-geranylumbelliferone, 8-GU) isolated from Paramignya timera, facilitate RIPK1-dependent dual modes of apoptosis and necroptosis by targeting IKKß upon TNF receptor1 (TNFR1) ligation. Analysis of events upstream of NF-κB revealed that 8-GU and ostruthin drastically inhibited TNF-induced IKK phosphorylation, while having no effect on TAK1 phosphorylation and TNFR1 complex-I formation. Interestingly, 8-GU did not affect the cell death induced by Fas ligand or TNF-related apoptosis-inducing ligand or that induced by DNA-damaging agents, indicating that 8-GU sensitizes TNF-induced cell death exclusively. Moreover, 8-GU accelerated TNF-driven necroptosis by up-regulating necrosome formation in FADD deficient cancer cells harboring RIPK3. Thus, the present study provides new insights into the molecular mechanism underlying geranylated 7-hydroxy coumarin-mediated control of the RIPK1-dependent early cell death checkpoint and suggests that 8-GU is a potential anti-cancer therapeutic via an alternative apoptosis-independent strategy to overcome TNF resistance.


Assuntos
Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Umbeliferonas/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/fisiologia , Cumarínicos/isolamento & purificação , Cumarínicos/farmacologia , Células HEK293 , Células HT29 , Células HeLa , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Umbeliferonas/isolamento & purificação
20.
Commun Biol ; 4(1): 1405, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916605

RESUMO

Though various transgene expression switches have been adopted in a wide variety of organisms for basic and biomedical research, intrinsic obstacles of those existing systems, including toxicity and silencing, have been limiting their use in vertebrate transgenesis. Here we demonstrate a novel QF-based binary transgene switch (IQ-Switch) that is relatively free of driver toxicity and transgene silencing, and exhibits potent and highly tunable transgene activation by the chemical inducer tebufenozide, a non-toxic lipophilic molecule to developing zebrafish with negligible background. The interchangeable IQ-Switch makes it possible to elicit ubiquitous and tissue specific transgene expression in a spatiotemporal manner. We generated a RASopathy disease model using IQ-Switch and demonstrated that the RASopathy symptoms were ameliorated by the specific BRAF(V600E) inhibitor vemurafenib, validating the therapeutic use of the gene switch. The orthogonal IQ-Switch provides a state-of-the-art platform for flexible regulation of transgene expression in zebrafish, potentially applicable in cell-based systems and other model organisms.


Assuntos
Animais Geneticamente Modificados/genética , Técnicas de Transferência de Genes , Genes de Troca , Transgenes , Peixe-Zebra/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA