Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Neuroendocrinology ; 114(1): 64-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37703838

RESUMO

INTRODUCTION: The proposed evolutionary origins and corresponding nomenclature of bilaterian gonadotropin-releasing hormone (GnRH)-related neuropeptides have changed tremendously with the aid of receptor deorphanization. However, the reclassification of the GnRH and corazonin (CRZ) signaling systems in Lophotrochozoa remains unclear. METHODS: We characterized GnRH and CRZ receptors in the mollusk Pacific abalone, Haliotis discus hannai (Hdh), by phylogenetic and gene expression analyses, bioluminescence-based reporter, Western blotting, substitution of peptide amino acids, in vivo neuropeptide injection, and RNA interference assays. RESULTS: Two Hdh CRZ-like receptors (Hdh-CRZR-A and Hdh-CRZR-B) and three Hdh GnRH-like receptors (Hdh-GnRHR1-A, Hdh-GnRHR1-B, and Hdh-GnRHR2) were identified. In phylogenetic analysis, Hdh-CRZR-A and -B grouped within the CRZ-type receptors, whereas Hdh-GnRHR1-A/-B and Hdh-GnRHR2 clustered within the GnRH/adipokinetic hormone (AKH)/CRZ-related peptide-type receptors. Hdh-CRZR-A/-B and Hdh-GnRHR1-A were activated by Hdh-CRZ (pQNYHFSNGWHA-NH2) and Hdh-GnRH (pQISFSPNWGT-NH2), respectively. Hdh-CRZR-A/-B dually coupled with the Gαq and Gαs signaling pathways, whereas Hdh-GnRHR1-A was linked only with Gαq signaling. Analysis of substituted peptides, [I2S3]Hdh-CRZ and [N2Y3H4]Hdh-GnRH, and in silico docking models revealed that the N-terminal amino acids of the peptides are critical for the selectivity of Hdh-CRZR and Hdh-GnRHR. Two precursor transcripts for Hdh-CRZ and Hdh-GnRH peptides and their receptors were mainly expressed in the neural ganglia, and their levels increased in starved abalones. Injection of Hdh-CRZ peptide into abalones decreased food consumption, whereas Hdh-CRZR knockdown increased food consumption. Moreover, Hdh-CRZ induced germinal vesicle breakdown in mature oocytes. CONCLUSION: Characterization of Hdh-CRZRs and Hdh-GnRHRs and their cognate peptides provides new insight into the evolutionary route of GnRH-related signaling systems in bilaterians.


Assuntos
Hormônio Liberador de Gonadotropina , Neuropeptídeos , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Filogenia , Invertebrados/genética , Invertebrados/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais
2.
Gen Comp Endocrinol ; 353: 114521, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621462

RESUMO

Myoinhibitory peptides (MIPs) affect various physiological functions, including juvenile hormone signaling, muscle contraction, larval development, and reproduction in invertebrates. Although MIPs are ligands for MIP and/or sex peptide receptors (MIP/SPRs) in diverse arthropods and model organisms belonging to Lophotrochozoa, the MIP signaling system has not yet been fully investigated in mollusks. In this study, we identified the MIP signaling system in the Pacific abalone Haliotis discus hannai (Hdh). Similar to the invertebrate MIPs, a total of eight paracopies of MIPs (named Hdh-MIP1 to Hdh-MIP8), harboring a WX5-7Wamide motif, except for Hdh-MIP2, were found in the Hdh-MIP precursor. Furthermore, we characterized a functional Hdh-MIPR, which responded to the Hdh-MIPs, except for Hdh-MIP2, possibly linked with the PKC/Ca2+ and PKA/cAMP signaling pathways. Hdh-MIPs delayed larval metamorphosis but increased the spawning behavior. These results suggest that the Hdh-MIP signaling system provides insights into the unique function of MIP in invertebrates.


Assuntos
Gastrópodes , Larva , Metamorfose Biológica , Transdução de Sinais , Animais , Metamorfose Biológica/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Transdução de Sinais/fisiologia , Gastrópodes/crescimento & desenvolvimento , Gastrópodes/metabolismo , Gastrópodes/fisiologia , Peptídeos , Reprodução/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37956901

RESUMO

Crustacean cardioactive peptide (CCAP) signaling systems have been characterized in a diverse range of protostomes, representatively in arthropods. The cyclic CX5C-type CCAP regulates various biological activities through CCAP receptors (CCAPRs), which are orthologous to neuropeptide S receptors (NPSRs) in deuterostomes. However, the CCAPRs of the lophotrochozoa remain poorly characterized; therefore, the relationship between the CCAP, NPS, and CX4C-type oxytocin/vasopressin (OT/VP) signaling systems is unclear. In this study, we identified a CCAP precursor and two CCAPR isoforms in the Pacific abalone (Haliotis discus hannai; Hdh). The Hdh-CCAP precursor was found to harbor three CX5C-type and one CX4C-type CCAPs. The Hdh-CCAPRs displayed homology with protostome CCAPRs and deuterostome NPSRs, having characteristics of the rhodopsin-type G protein-coupled receptors. Phylogenetic analysis showed that lophotrochozoan CCAPRs, including Hdh-CCAPRs, form a monophyletic group distinct from arthropod CCAPRs. Reporter assays demonstrated that all examined Hdh-CCAPs and insect CCAP-induced intracellular Ca2+ mobilization and cAMP accumulation in Hdh-CCAPR-expressing HEK293 cells, whereas none of the CCAP peptides inhibited the forskolin-stimulated cAMP signaling pathway even at micromolar concentrations. In silico ligand-receptor docking models showed that the N-terminal FCN motifs of Hdh-CCAPs are deeply inserted inside the binding pocket of Hdh-CCAPR, forming extensive hydrophobic interactions. In mature Pacific abalone, the transcripts for Hdh-CCAP precursor and Hdh-CCAPR were highly expressed in the neural ganglia compared to the peripheral tissues. Collectively, this study characterized the first CCAP signaling system linked to both Ca2+/PKC and cAMP/PKA signal transduction pathways in gastropod mollusks and gives insights into the evolutional origins of deuterostomian NPS and OT/VP signaling systems.


Assuntos
Gastrópodes , Neuropeptídeos , Humanos , Animais , Gastrópodes/metabolismo , Filogenia , Células HEK293 , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transdução de Sinais
4.
Gen Comp Endocrinol ; 276: 52-59, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849410

RESUMO

Neurotransmitters such as serotonin (5-hydroxytryptamine; 5-HT) in the central nervous system regulate diverse physiological functions, including reproduction, feeding, learning, and memory, in diverse animal phyla. 5-HT and the 5-HT1 subtype receptor play important roles in sexual maturation and in the initiation of gamete release in mollusks. However, little is known about the involvement of other 5-HT receptor subfamilies in the reproduction process. In the present study, we identified the cDNAs encoding eight subtypes of 5-HT receptors from the ganglia tissues of the Pacific abalone Haliotis discus hannai (Mollusca; Gastropoda; Haliotidae), and examined the gonadal expression of the transcripts of 5-HT receptors. A phylogenetic analysis indicated that the molluskan 5-HT receptors are largely classified into four major clades: 5-HT1/5/7, 5-HT2, 5-HT4, and 5-HT6. Among the H. discus hannai (Hdh) 5-HT1-7 transcripts, Hdh5-HT1B, 4A, 4B, and 6 were the major subtypes detected in the mature ovary. Estradiol-17ß injection into the pedal sinus induced the downregulation of 5-HT4B and upregulation of 5-HT6 transcripts in the ovary of mature abalone within 72 h. In HEK293 cells overexpressing Hdh5-HT1B, forskolin-stimulated cAMP response element luciferase (CRE-Luc) reporter activity was inhibited by 5-HT in a dose-dependent manner, whereas serum response element luciferase (SRE-Luc) activity was not affected. In Hdh5-HT4A-expressing HEK293 cells, forskolin-stimulated CRE-Luc and SRE-Luc reporter activities were both marginally increased by treatment with a high dose of 5-HT. Our results provide new insights into the roles of 5-HT through diverse G protein-coupled 5-HT receptors in the reproductive process of mollusks.


Assuntos
Gastrópodes/genética , Regulação da Expressão Gênica , Receptores de Serotonina/genética , Animais , DNA Complementar/metabolismo , Estradiol/farmacologia , Feminino , Gastrópodes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Gen Comp Endocrinol ; 282: 113209, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226256

RESUMO

The highly conserved brain-pituitary-gonadal (BPG) axis controls reproduction in all vertebrates, so analyzing the regulation of this signaling cascade is important for understanding reproductive competence. The protein kinase mechanistic target of rapamycin (mTOR) functions as a conserved regulator of cellular growth and metabolism in all eukaryotes, and also regulates the reproductive axis in mammals. However, whether mTOR might also regulate the BPG axis in non-mammalian vertebrates remains unexplored. We used complementary experimental approaches in an African cichlid fish, Astatotilapia burtoni, to demonstrate that mTOR is involved in regulation of the brain, pituitary, and testes when males rise in rank to social dominance. mTOR or downstream components of its signaling pathway (p-p70S6K) were detected in gonadotropin-releasing hormone (GnRH1) neurons, the pituitary, and testes. Transcript levels of mtor in the pituitary and testes also varied when reproductively-suppressed subordinate males rose in social rank to become dominant reproductively-active males, a transition similar to puberty in mammals. Intracerebroventricular injection of the mTORC1 inhibitor, rapamycin, revealed a role for mTOR in the socially-induced hypertrophy of GnRH1 neurons. Rapamycin treatment also had effects at the pituitary and testes, suggesting involvement of the mTORC1 complex at multiple levels of the reproductive axis. Thus, we show that mTOR regulation of BPG function is conserved to fishes, likely playing important roles in regulating reproduction and fertility across all male vertebrates.


Assuntos
Ciclídeos/fisiologia , Reprodução/fisiologia , Predomínio Social , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ciclídeos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Testículo/efeitos dos fármacos , Testículo/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-29679684

RESUMO

Neuropeptides in the central nervous system regulate reproductive activities in vertebrates. Ala-Pro-Gly-Trp-NH2 (APGWamide), a neuromediator expressed in the neural ganglia of mollusks, controls sexual maturation and reproduction. To clarify the role of APGWamide in sexual behavior regulation and gamete cell maturation in mollusks, we cloned the cDNA of APGWamide precursor (Hdh-APGWamide) and examined the spatiotemporal expression of the transcript in the Pacific abalone Haliotis discus hannai. The 222-amino acid sequence of the precursor deduced from the cDNA sequence showed typical features of gastropod APGWamide precursors. Phylogenetic analysis revealed that Hdh-APGWamide is classified with other gastropod APGWamide precursors, which form a separate branch from those of the bivalves. Hdh-APGWamide mRNA was highly expressed in the neural ganglia in both sexes. In females, the three ganglia (pleuro-pedal ganglion, PPG; branchial ganglion, and cerebral ganglion) showed similar expression in immature and mature animals, whereas in males, the level in the PPG only was higher at maturity (P < 0.05). In vivo injection of APGWamide or 5-hydroxytryptamine (10-3 M) increased the frequency of spawning and the number of released sperm cells by mature males (P < 0.05), while concentrations above 10-7 M enhanced germinal vesicle breakdown in fully developed cultured oocytes (P < 0.05). Thus, the phylogenetic branch of the APGWamide precursor gene in Haliotidae was separate from the other branches under the phylum Mollusca, and this gene exhibited ganglion-specific expression, indicating that it may induce final maturation and spawning in both sexes of Haliotis spp.


Assuntos
Gastrópodes/genética , Gastrópodes/fisiologia , Perfilação da Expressão Gênica , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Feminino , Gânglios/metabolismo , Masculino , Neuropeptídeos/administração & dosagem , Neuropeptídeos/genética , Oócitos/citologia , Oócitos/efeitos dos fármacos , Filogenia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Reprodução , Serotonina/administração & dosagem , Comportamento Sexual Animal
7.
Environ Microbiol ; 19(2): 628-644, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27750393

RESUMO

Psychrobacter sp. PAMC 21119, isolated from Antarctic permafrost soil, grows and proliferates at subzero temperatures. However, its major mechanism of cold adaptation regulation remains poorly understood. We investigated the transcriptomic and proteomic responses of this species to cold temperatures by comparing profiles at -5°C and 20°C to understand how extreme microorganisms survive under subzero conditions. We found a total of 2,906 transcripts and 584 differentially expressed genes (≥ twofold, P <0.005) by RNA-seq. Genes for translation, ribosomal structure and biogenesis were upregulated, and lipid transport and metabolism was downregulated at low temperatures. A total of 60 protein spots (≥ 1.8 fold, P < 0.005) showed differential expression on two-dimensional gel electrophoresis and the proteins were identified by mass spectrometry. The most prominent upregulated proteins in response to cold were involved in metabolite transport, protein folding and membrane fluidity. Proteins involved in energy production and conversion, and heme protein synthesis were downregulated. Moreover, isoform exchange of cold-shock proteins was detected at both temperatures. Interestingly, pathways for acetyl-CoA metabolism, putrescine synthesis and amino acid metabolism were upregulated. This study highlights some of the strategies and different physiological states that Psychrobacter sp. PAMC 21119 has developed to adapt to the cold environment in Antarctica.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas e Peptídeos de Choque Frio/metabolismo , Temperatura Baixa , Proteômica , Psychrobacter/fisiologia , Transcriptoma , Acetilcoenzima A/metabolismo , Regiões Antárticas , Proteínas de Bactérias/genética , Proteínas e Peptídeos de Choque Frio/genética , Regulação Bacteriana da Expressão Gênica , Dobramento de Proteína
8.
Zoolog Sci ; 34(3): 235-241, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28589840

RESUMO

Nuclear receptor (NR) interacting proteins, such as coactivators and corepressors, play a crucial role in specifying the transcriptional activity of the receptor. However, little is known about the functional features of the NR coregulators in marine invertebrates. Using the yeast two-hybrid screening method, a sea urchin oocyte cDNA library was screened for proteins that interact with the ligand-binding domain of human RXRα (hRXRα) as the bait protein in the presence of 9-cis retinoic acid. Here, we describe IQ motif containing protein D (IQCD) as an RXR-interacting coactivator. The open reading frame of Strongylocentrotus nudus IQCD (SnIQCD) cDNA contains 1464 bp encoding a protein of 487 amino acids. SnIQCD and the vertebrate IQCDs contain well-conserved C-terminal IQ motifs and coiled-coil domains. The interactions between RXRα and IQCD were confirmed by an immunoprecipitation assay and a mammal two-hybrid assay. RXRα preferentially interacted with the C-terminal half including IQ motif than the N-terminal half of SnIQCD. The coactivator interacting LXXLL motif in SnIQCD is not directly involved in the interaction with RXRα. SnIQCD overexpression increased the basal RXR transactivation of a RXR-responsive reporter gene. Furthermore, SnIQCD enhanced the transcriptional activity of RXR heterodimeric partners such as RAR, PPAR, and the steroid hormone receptor family members from mammals, teleost fish, and sea urchin. Taken together, we suggest that IQCD orthologs are able to function as transcriptional coactivators cooperating with NRs.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ouriços-do-Mar/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , DNA Complementar , Humanos , Filogenia , Receptores Citoplasmáticos e Nucleares/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-28408352

RESUMO

Gonadotropin-releasing hormone (GnRH) is a key neuropeptide regulating reproduction in humans and other vertebrates. Recently, GnRH-like cDNAs and peptides were reported in marine mollusks, implying that GnRH-mediated reproduction is an ancient neuroendocrine system that arose prior to the divergence of protostomes and deuterostomes. Here, we evaluated the reproductive control system mediated by GnRH in the Pacific abalone Haliotis discus hannai. We cloned a prepro-GnRH cDNA (Hdh-GnRH) from the pleural-pedal ganglion (PPG) in H. discus hannai, and analyzed its spatiotemporal gene expression pattern. The open reading frame of Hdh-GnRH encodes a protein of 101 amino acids, consisting of a signal peptide, a GnRH dodecapeptide, a cleavage site, and a GnRH-associated peptide. This structure and sequence are highly similar to GnRH-like peptides reported for mollusks and other invertebrates. Quantitative polymerase chain reaction demonstrated that Hdh-GnRH mRNA was more strongly expressed in the ganglions (PPG and cerebral ganglion [CG]) than in other tissues (gonads, gills, intestine, hemocytes, muscle, and mantle) in both sexes. In females, the expression levels of Hdh-GnRH mRNA in the PPG and branchial ganglion (BG) were significantly higher at the ripe and partial spent stages than at the early and late active stages. In males, Hdh-GnRH mRNA levels in the BG showed a significant increase in the partial spent stage. Unexpectedly, Hdh-GnRH levels in the CG were not significantly different among the examined stages in both sexes. These results suggest that Hdh-GnRH mRNA expression profiles in the BG and possibly the PPG are tightly correlated with abalone reproductive activities.


Assuntos
Sequência de Aminoácidos/genética , Gastrópodes/genética , Hormônio Liberador de Gonadotropina/genética , Filogenia , Animais , Clonagem Molecular , Gastrópodes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/biossíntese , Dados de Sequência Molecular , Reprodução/genética , Alinhamento de Sequência
10.
Genes Genomics ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922499

RESUMO

BACKGROUND: The genes involved in cephalopod development and their association with hatching and survival during early life stages have been extensively studied. However, few studies have investigated the paralarvae transcriptome of the East Asian common octopus (Octopus sinen sis). OBJECTIVE: This study aimed to identify the genes related to embryonic development and hatching in O. sinensis using RNA sequencing (RNA-seq) and verify the genes most relevant to different embryonic stages. METHODS: RNA samples from hatched and 25 days post-hatching (dph) O. sinensis paralarvae were used to construct cDNA libraries. Clean reads from individual samples were aligned to the reference O. sinensis database to identify the differentially expressed genes (DEGs) between the 0- and 25-dph paralarvae libraries. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to supplement the RNA-seq data for embryogenic developmental stages. RESULTS: A total of 12,597 transcripts were annotated and 5,468 DEGs were identified between the 0- and 25-dph O. sinensis paralarvae, including 2,715 upregulated and 2,753 downregulated transcripts in the 25-dph paralarvae. Several key DEGs were related to transmembrane transport, lipid biosynthesis, monooxygenase activity, lipid transport, neuropeptide signaling, transcription regulation, and protein-cysteine S-palmitoyltransferase activity during the post-hatching development of O. sinensis paralarvae. RT-qPCR analysis further revealed that SLC5A3A, ABCC12, and NPC1 transcripts in 20 and/or 30 days post-fertilization (dpf) embryos were significantly higher (p < 0.05) than those in 10-dpf embryos. CONCLUSION: Transcriptome profiles provide molecular targets to understand the embryonic development, hatching, and survival of O. sinensis paralarvae, and enhance octopus production.

11.
Zoolog Sci ; 30(9): 731-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24004079

RESUMO

Liver X receptors, LXRs, are ligand-activated transcription factors that belong to the group H nuclear receptor (NR) superfamily. In this study, an LXR (HrLXR) cDNA was cloned from the ascidian Halocynthia roretzi hepatopancreas and characterized to examine the functional conservation of ancestral LXRs in chordates. A phylogenetic analysis of HrLXR showed that it belongs to the tunicate (urochordate) LXR subgroup, which is distinct from vertebrate LXRs. Quantitative real-time PCR analysis revealed that HrLXR mRNA was expressed predominantly in the gills, and highly expressed in unfertilized eggs followed by decrease at later embryonic and larval stages. Unexpectedly, HrLXR was not activated by GW3965, whereas a synthetic ligand for a farnesoid X receptor, GW4064, activated HrLXR. This activation was abolished by the deletion of 51 amino acids from the N-terminus. In a mammalian two-hybrid system, HrLXR interacted with HrRXR in the presence of GW4064 or 9-cis retinoic acid. The injection of GW3965 and GW4064 in vivo increased the ATPbinding cassette sub-family G member 4 and HrLXR mRNA levels in the hepatopancreas and gills. These results suggest that the mRNA expression and transcriptional properties of HrLXR are different from those of vertebrate LXRs, although HrLXR is likely responsive to the related NR ligand, GW4064.


Assuntos
Regulação da Expressão Gênica/fisiologia , Receptores Nucleares Órfãos/metabolismo , Urocordados/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Células HEK293 , Humanos , Isoxazóis/farmacologia , Receptores X do Fígado , Receptores Nucleares Órfãos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Urocordados/efeitos dos fármacos
12.
Fish Physiol Biochem ; 39(5): 1353-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23519897

RESUMO

Thyrotropin (thyroid-stimulating hormone, TSH), a heterodimeric glycoprotein hormone produced in the pituitary, stimulates the thyroid gland and release of thyroid hormones. In contrast to a well-known efficacy of recombinant mammalian TSHs, there is no report about the production of teleost recombinant TSH and its biological activity. In this study, we report the production of a single-chain recombinant TSH (mtTSH) of Manchurian trout (Brachymystax lenok), by baculovirus in silkworm (Bombyx mori) larvae. The mtTSH was produced in silkworm larvae and characterized as a form of N-linked glycosylation. The cAMP signaling system in transiently transfected COS-7 cells revealed that the mtTSH was recognized by their cognate receptors, salmon TSHα and TSHß receptors, but not LH receptor. The thyrotropic potency of the mtTSH was examined by rainbow trout basibranchial tissues containing thyroid follicles. The height of follicle epithelial cells was significantly increased by treatments of mtTSH in vivo and in vitro. In conclusion, the present study suggests that the mtTSH produced by baculovirus-silkworm larvae is a biologically active recombinant TSH.


Assuntos
Reatores Biológicos , Hormônio do Crescimento/biossíntese , Tireotropina/biossíntese , Truta/genética , Análise de Variância , Animais , Baculoviridae/metabolismo , Western Blotting , Bombyx/virologia , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Primers do DNA/genética , DNA Complementar/biossíntese , Eletroforese em Gel de Poliacrilamida , Células Epiteliais/efeitos dos fármacos , Glicosilação , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Larva/virologia , Oncorhynchus mykiss/metabolismo , Tireotropina/metabolismo , Tireotropina/farmacologia
13.
Dev Reprod ; 27(2): 91-99, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37529014

RESUMO

The sea cucumber, Apostichopus japonicus, is one of the most valuable aquatic species. The color of body wall and appearance are important for the value of sea cucumbers. To examine expression pattern of long-chain acyl-coenzyme A dehydrogenase (LCAD), nuclear distribution C-containing protein 3 (NUDCD3), and receptor tyrosine kinase Tie-1 (TIE1), previously reported as differently expressed genes during the pigmentation of sea cucumber, we analyzed the temporal profiles of LCAD, NUDCD3, and TIE1 mRNAs in LED-exposed and light-shielded A. japonicus. Real-time quantitative PCR revealed that the LCAD, NUDCD3, and TIE1 mRNAs from the juveniles at 40-60 days post-fertilization (dpf) exhibited increasing patterns as compared to those of an early developmental larva (6-dpf). At 60-dpf juveniles, the LCAD and TIE1 mRNA levels of LED-exposed individuals were higher than those of light-shielded ones, whereas at 40-dpf and 50-dpf juveniles, the NUDCD3 mRNA expression was higher in the light-shielded condition (p<0.05). In the pigmented juveniles (90-dpf), the LCAD and TIE1 mRNA levels tended to show higher levels in red individuals than those in green ones, but there was a conversely higher level of NUDCD3 mRNA in green larva. In situ examination of LCAD and NUDCD3 mRNAs in light-shielded 6-dpf larva revealed that both genes are mainly expressed in the internal organs compared to the body surface. Together, these results may provide insights into the differential gene expression of LCAD, NUDCD3, and TIE1 during pigmentation process of the sea cucumber.

14.
Gen Comp Endocrinol ; 178(1): 28-36, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22522050

RESUMO

The gonadotropins (GTHs) follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are the key regulators of reproduction. We determined the competence of heterologous recombinant GTHs at eliciting steroid secretion from carp ovaries at different reproductive stages. We collected carp ovaries at: early, mid and end vitellogenesis, when most of the oocytes still contained a germinal vesicle (GV) at a central stage, and mature ovaries with a migrating GV. Plasma estradiol (E2) levels at early vitellogenesis were high and decreased thereafter. Basal secretion levels of E2 increased with oocyte diameter and GSI value, whereas 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) was detected only in females with mature follicles. Carp ovary fragments were exposed to recombinant fish GTHs belonging to different teleost orders: Japanese eel (Anguilla japonica, Anguilliformes), Manchurian trout (Brachymystax lenok, Salmoniformes), and Nile tilapia (Oreochromis niloticus); to mammalian GTHs (pFSH and hCG), or to carp and tilapia pituitary extract (CPE and TPE, respectively). All of the recombinant GTHs tested stimulated steroid secretion. However, the steroid secretion differed according to the type of GTH and the developmental state of the ovary. CPE increased the secretion of both E2 and DHP at almost all stages of ovarian maturity. In mature ovarian fragments, DHP secretion was higher in response to recombinant LHs (eel and tilapia) than to recombinant FSH. Early- and mid-vitellogenic ovaries showed no secretion of DHP and high secretion of E2 in response to all recombinant GTHs tested. This is in line with the hypothesis that LH regulates the final stages of maturation, when the involvement of FSH is marginal. These results may contribute to understanding the mechanisms that determine differential activation of steroid secretion and specificity in fish.


Assuntos
Carpas/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Luteinizante/farmacologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Reprodução/fisiologia , Anguilla , Animais , Estradiol/sangue , Feminino , Humanos , Folículo Ovariano/citologia , Tilápia , Truta , Vitelogênese/efeitos dos fármacos
15.
Gen Comp Endocrinol ; 178(2): 380-90, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22732083

RESUMO

Retinoid X receptors (RXRs) are highly conserved members of the nuclear hormone receptor family that mediate various physiological processes in vertebrates and invertebrates. We examined the expression patterns of RXR in the ascidian Halocynthia roretzi across a wide range of tissues and stages of embryo development, as well as the regulation of gene transcription by the ascidian RXR. H. roretzi RXR cDNA (HrRXR) was cloned from 64-cell stage embryos. The overall amino acid sequence of HrRXR showed high sequence identity with a urochordate Ciona intestinalis RXR (58%), but the ligand-binding domain of HrRXR was more similar to vertebrate orthologs than to those of invertebrate RXRs. Based on a phylogenetic analysis, HrRXR belongs to a group of urochordates that are separate from vertebrate RXRs, showing a clear evolutionary history. Real-time quantitative polymerase chain reaction and whole-mount in situ hybridization analyses revealed that the HrRXR mRNA is of maternal origin during embryogenesis, and in the examined adult tissues it is expressed in the muscles, gills, gonads, and the hepatopancreas. Immunofluorescence and immunohistochemical staining demonstrated that HrRXR is localized to the nucleus and highly expressed in the gills and hepatopancreas. Unlike human RXRα, HrRXR did not show 9-cis retinoic acid- and bexarotene (LGD1069)-dependent transactivation. While a synthetic ligand for farnesoid X receptor (FXR), GW4064, did not increase the transcriptional activation in HrRXR- or HrRXR/HrFXR-transfected HEK-293 cells, the ligand showed weak but significant activity for a single amino acid mutant of HrRXR ((Phe)231(Cys)) and HrFXR cotransfected cells. The present study suggests that the marine invertebrate chordate RXR may possess endogenous ligands that are different than vertebrate RXR ligands and which function during early embryonic stages.


Assuntos
Cordados/metabolismo , Receptores X de Retinoides/metabolismo , Urocordados/metabolismo , Animais , Evolução Biológica , Western Blotting , Linhagem Celular , Cordados/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Imunofluorescência , Humanos , Imuno-Histoquímica , Hibridização In Situ , Reação em Cadeia da Polimerase , Receptores X de Retinoides/genética , Urocordados/genética
16.
Molecules ; 17(10): 12357-64, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23090017

RESUMO

The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1) and 3,3,12-trihydroxy-7-deoxycholanic acid (2) through HRFABMS and NMR data analyses.


Assuntos
Bactérias/química , Ácido Cólico/isolamento & purificação , Água do Mar , Urocordados/microbiologia , Animais , Ácido Cólico/química , Cromatografia Líquida , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
17.
PLoS One ; 17(5): e0267039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35511902

RESUMO

The invertebrate LFRFamide (LFRFa) and short neuropeptide F (sNPF), consisting of 6 to 10 amino acids, are orthologs for bilaterian NPF/Y, which consist of 36 to 40 amino acids. Recently, a molluscan G protein-coupled receptor (GPCR) for NPF was characterized in Pacific abalone (Haliotis discus hannai). To address the functional evolutionary route of the invertebrate LFRFa and NPF signaling system, in this study, we identified cDNAs encoding LFRFa precursors and the sNPF receptor (Hdh-sNPFR) in Pacific abalone. Four LFRFa mature peptides with 6 or 7 amino acids were predicted: GSLFRFa, GGLFRFa, GTLFRFa, and GSTLFRFa. Hdh-sNPFR was identified as a classical rhodopsin-like GPCR and classified into a molluscan sNPFR group. In HEK293 cells, Hdh-sNPFR was mainly localized in the cell membranes and internalized in the cytoplasm following treatment with LFRFa peptides. Reporter assays demonstrated that LFRFa peptides inhibit forskolin-stimulated cAMP accumulation in Hdh-sNPFR-expressing HEK293 cells. LFRFa precursor and Hdh-sNPFR transcripts were more strongly expressed in the cerebral and pleural-pedal ganglia of Pacific abalone than in the peripheral tissues such as the ovary, gills, intestine, and hepatopancreas. The levels of LFRFa transcripts in the ovary, intestine, and hepatopancreas were significantly higher in mature female abalone than in immature females. Injection of LFRFa induced the egg release and spawning behavior of mature abalone, but suppressed food intake. These results suggest that LFRFa peptides are endogenous ligands for Hdh-sNPFR involved in food intake and reproduction through a Gαi-protein dependent signaling pathway.


Assuntos
Gastrópodes , Aminoácidos/metabolismo , Animais , Feminino , Gastrópodes/fisiologia , Células HEK293 , Humanos , Neuropeptídeos , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
18.
Front Endocrinol (Lausanne) ; 13: 994863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187101

RESUMO

Tachykinin (TK) families, including the first neuropeptide substance P, have been intensively explored in bilaterians. Knowledge of signaling of TK receptors (TKRs) has enabled the comprehension of diverse physiological processes. However, TK signaling systems are largely unknown in Lophotrochozoa. This study identified two TK precursors and two TKR isoforms in the Pacific abalone Haliotis discus hannai (Hdh), and characterized Hdh-TK signaling. Hdh-TK peptides harbored protostomian TK-specific FXGXRamide or unique YXGXRamide motifs at the C-termini. A phylogenetic analysis showed that lophotrochozoan TKRs, including Hdh-TKRs, form a monophyletic group distinct from arthropod TKRs and natalisin receptor groups. Although reporter assays demonstrated that all examined Hdh-TK peptides activate intracellular cAMP accumulation and Ca2+ mobilization in Hdh-TKR-expressing mammalian cells, Hdh-TK peptides with N-terminal aromatic residues and C-terminal FXGXRamide motifs were more active than shorter or less aromatic Hdh-TK peptides with a C-terminal YXGXRamide. In addition, we showed that ligand-stimulated Hdh-TKRs mediate ERK1/2 phosphorylation in HEK293 cells and that ERK1/2 phosphorylation is inhibited by PKA and PKC inhibitors. In three-dimensional in silico Hdh-TKR binding modeling, higher docking scores of Hdh-TK peptides were consistent with the lower EC50 values in the reporter assays. The transcripts for Hdh-TK precursors and Hdh-TKR were highly expressed in the neural ganglia, with lower expression levels in peripheral tissues. When abalone were starved for 3 weeks, Hdh-TK1 transcript levels, but not Hdh-TK2, were increased in the cerebral ganglia (CG), intestine, and hepatopancreas, contrasting with the decreased lipid content and transcript levels of sterol regulatory element-binding protein (SREBP). At 24 h post-injection in vivo, the lower dose of Hdh-TK1 mixture increased SREBP transcript levels in the CG and hepatopancreas and accumulative food consumption of abalone. Higher doses of Hdh-TK1 and Hdh-TK2 mixtures decreased the SREBP levels in the CG. When Hdh-TK2-specific siRNA was injected into abalone, intestinal SREBP levels were significantly increased, whereas administration of both Hdh-TK1 and Hdh-TK2 siRNA led to decreased SREBP expression in the CG. Collectively, our results demonstrate the first TK signaling system in gastropod mollusks and suggest a possible role for TK peptides in regulating lipid metabolism in the neural and peripheral tissues of abalone.


Assuntos
Gastrópodes , Neuropeptídeos , Animais , Gastrópodes/química , Gastrópodes/genética , Gastrópodes/metabolismo , Células HEK293 , Humanos , Ligantes , Metabolismo dos Lipídeos , Lipídeos , Mamíferos/genética , Moluscos/genética , Moluscos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , RNA Interferente Pequeno , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/metabolismo , Substância P/metabolismo , Taquicininas/metabolismo
19.
J Anal Methods Chem ; 2022: 5822562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299711

RESUMO

Pacific abalone (Haliotis discus hannai) is a commercially important mollusk; therefore, improvement of its growth performance and quality has been emphasized. During embryonic development, abalones undergo a series of distinct larval stages, including swimming veliger larvae, juveniles, and mature individuals, and their biomolecular composition varies depending on the developmental stage. Therefore, in the present study, we performed untargeted lipid profiling of abalone tissues at different developmental stages as well as the hemolymph of mature female and male abalones using ultrahigh-performance liquid chromatography-tandem mass spectrometry. These profiles can provide meaningful information to understand compositional changes in lipids through abalone metamorphosis and development. A total of 132 lipids belonging to 15 classes were identified from abalone tissues at different developmental stages. Moreover, 21 lipids belonging to 8 classes were identified from the hemolymph of mature abalones. All data were processed following strict criteria to provide accurate information. Triglycerides and phosphatidylcholines were the major lipid components identified in both tissues and hemolymph, accounting for, respectively, 27% and 15% of all lipids in tissues and, respectively, 24% and 38% of all lipids in the hemolymph. Of note, lysophosphatidylcholine was only detected in the tissues of mature abalones, paving the way for further analyses of abalone lipids based on developmental stages. The present findings offer novel insights into the lipidome of abalone tissues and hemolymph at different developmental stages, building a foundation for improving the efficiency and quality of abalone aquaculture.

20.
Gen Comp Endocrinol ; 171(3): 341-9, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21362423

RESUMO

The cDNAs that encode the glucocorticoid receptors odGR1 and odGR2 were cloned from a euryhaline teleost, the marine medaka (Oryzias dancena). The open reading frames of odGR1 and odGR2 encode 790 and 783 amino acids, respectively, and show a sequence identity of 46% with each other. When inter- and intra-species comparisons of the GR domains were made, the N-terminal AF-1 (A/B) and hinge (D) domains showed relatively low identities, whereas the DNA-binding (C) domain (DBD) and ligand-binding (E) domain showed relatively high identities. Through phylogenetic analysis, we revealed that odGR1 and odGR2 belong to the teleost GR1 and GR2 groups, respectively. Transfection of odGR1 or odGR2 expression vectors into COS-7 cells along with a reporter vector demonstrated that cortisol and dexamethasone dose-dependently induce transcriptional activity in both GRs. As described in other teleostean fish, the transactivity of odGR2 was more sensitive at far lower concentrations of ligands than the transactivity of odGR1. When treated with aldosterone, the reporter gene was activated in COS-7 cells transfected with odGR2 but not in cells transfected with odGR1. RU486 inhibited transactivation by both GRs, but odGR2 was less sensitive to the inhibitor. Interestingly, alterations in coregulators, GRIP-1 and SMILE, mediated transactivation that was more drastic for odGR2 than odGR1. A nine-amino acid insertion (WRARQNTDG) in the DBD of odGR1 had a weak but significant influence on the transactivity of odGR2 with respect to responsiveness to agonists or coregulators. Taken together, these results indicate that the two odGRs possess distinct features not only for ligand sensitivity but also for preferential coregulator recruitment.


Assuntos
Oryzias/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Sequência de Aminoácidos , Animais , Dexametasona/farmacologia , Antagonistas de Hormônios/farmacologia , Hidrocortisona/farmacologia , Mifepristona/farmacologia , Dados de Sequência Molecular , RNA Mensageiro/genética , Receptores de Glucocorticoides/antagonistas & inibidores , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA