RESUMO
The morphology of calcium oxalate monohydrate precipitates (COM, Ca(C2O4)·H2O, P21/c, whewellite) occurring as crystals or intergrowths, as well as distribution of crystal-bearing idioblasts, have been studied for the first time in the bark of stone birch Betula ermanii from Sakhalin Island sampled in an area affected by mud volcanism and an unaffected typical forest environment taken for reference. The study addresses several issues (i) number and size of phytoliths and their distribution in different cell types; (ii) density of calcification in specific cells; (iii) habits of single crystals, twins, and complex intergrowths, as well as frequency of different morphologies and their relations. The trends of time-dependent morphological changes in separately analyzed crystals and intergrowths record the evolution of COM morphology from nuclei to mature grains. Of special interest are the nucleation sites and features of organic and inorganic seeds and nuclei for COM phytoliths. The precipitation process and crystal habits are mainly controlled by supersaturation, and it is thus important to constrain the Ca distribution patterns in different bark tissues. The B. ermanii samples were analyzed by several methods: scanning electron microscopy (SEM) for the distribution patterns and micromorphology of COM precipitates and bulk Ca content in bark; electron probe microanalysis (EPMA) for the mineral chemistry of COM precipitates; inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) for trace elements in bulk bark and wood. RESEARCH HIGHLIGHTS: The distribution and morphology of whewellite precipitates in the analyzed B. ermanii bark samples indicate that the aqueous solution was most strongly supersaturated with respect to the Ca(C2O4)·H2O solid phase at the parenchyma-sclerenchyma boundary, where most of the COM spherulites are localized and often coexist with large single crystals and contact COM twins.
Assuntos
Betula , Oxalato de Cálcio , Microscopia Eletrônica de Varredura , Casca de Planta , Oxalato de Cálcio/química , Oxalato de Cálcio/análise , Betula/química , Casca de Planta/química , Cristalização , IlhasRESUMO
Three mud volcanoes (MVs) in the Kerch Peninsula were studied as a geological source of mercury. The study focused on total mercury (THg) concentrations in MV waters, mud masses and plants colonizing MV areas; gaseous elemental mercury (GEM) in the atmosphere above MVs; and sulfide mercury (HgS) and HgCl2 species in representative samples of mud masses. THg concentrations in the illite-smectite mud masses ranged from 38 to 920 ng/g. They contained up to 70% of total mercury in sulfide form (in pyrite and cinnabar), but lacked HgCl2. THg values in MV waters of HCO3-Cl/Na- and/or Cl-HCO3/Na-types with ÑÐ = 7.4-9.5 mostly fell in a range of 79-440 ng/L, but rarely exceeded 600 ng/L, being comparable with those for geothermal systems. Another issue of interest was the distribution of THg in below- and above-ground parts of halophyte plant Limonium caspium. THg was incorporated into the plant roots, leaves and flowers; the roots exhibited higher concentrations of THg relative to the other organs. The Hg bioaccumulation factor ranged from 0.06 to 0.76. GEM concentrations measured over large bubbling MV pools and newly formed cracks showed values (50 to 520 ng·m-3) higher than background values (≤3 ng·m-3) associated with pristine test sites and background values measured within three MV areas of the Kerch peninsula that is slightly higher than background concentration for the Northern Hemisphere. Maximum GEM contents were comparable with the values found in geothermal and magmatic volcanic provinces.
RESUMO
Crystal structures of unquenchable high-temperature polymorphs of Ca2SiO4, important in cement chemistry, have eluded single-crystal X-ray analysis. However, the problem may be addressed by studying chemically stabilized Ca2SiO4 polymorphs at ambient temperature. Here an incommensurately modulated crystal structure of flamite [Pnma(0ß0)00s, q = 0.2728â (2)b*, a = 6.8588â (2)â Å, b = 5.4301â (2)â Å, c = 9.4052â (3)â Å] is described. It is a mineral analogue of orthorhombic \alpha _{\rm H}^{\prime}-Ca2SiO4 (stable between 1160 and 1425°C), naturally stabilized by substitution with phosphorus. The incommensurate modulation results from wave-like displacement of cation sites accompanied by tilting of (Si,P)O4 tetrahedra and variation of the Na/(Ca + Na + K) ratio along the modulation period. The studied sample from Hatrurim Basin (Negev Desert, Israel) with composition (Ca1.75K0.12Na0.12)1.99(Si0.74P0.26)1.00O4 also demonstrates pseudomerohedral cyclic twinning around the a axis, which results from pseudohexagonal topology of the crystal structure and complicates the indexing of X-ray diffraction data.